com.intel.analytics.zoo.feature.image.RandomSampler.scala Maven / Gradle / Ivy
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.image
import com.intel.analytics.bigdl.transform.vision.image.{FeatureTransformer, ImageFeature, augmentation}
import com.intel.analytics.bigdl.transform.vision.image.augmentation.Crop
import com.intel.analytics.bigdl.transform.vision.image.label.roi.{BatchSampler, RandomSampler, RoiLabel, RoiProject}
import com.intel.analytics.bigdl.transform.vision.image.util.BoundingBox
import com.intel.analytics.bigdl.utils.RandomGenerator._
import org.opencv.core.Mat
import scala.collection.mutable.ArrayBuffer
/**
* Random sample a bounding box given some constraints and crop the image
* This is used in SSD training augmentation
*/
class ImageRandomSampler extends ImageProcessing {
private val internalSampler = RandomSampler()
override def apply(prev: Iterator[ImageFeature]): Iterator[ImageFeature] = {
internalSampler.apply(prev)
}
override def transform(feature: ImageFeature): ImageFeature = {
internalSampler.transform(feature)
}
}
object ImageRandomSampler {
def apply(): ImageRandomSampler = {
new ImageRandomSampler()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy