com.intel.analytics.zoo.models.recommendation.NeuralCF.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analytics-zoo-bigdl_0.13.0-spark_2.1.1 Show documentation
Show all versions of analytics-zoo-bigdl_0.13.0-spark_2.1.1 Show documentation
Big Data AI platform for distributed TensorFlow and PyTorch on Apache Spark.
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.models.recommendation
import com.intel.analytics.bigdl.nn.Graph.ModuleNode
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import com.intel.analytics.zoo.models.common.ZooModel
import com.intel.analytics.zoo.pipeline.api.keras.layers._
import com.intel.analytics.zoo.pipeline.api.keras.models.Model
import scala.reflect.ClassTag
/**
* The neural collaborative filtering model used for recommendation.
* @param userCount The number of users. Positive integer.
* @param itemCount The number of items. Positive integer.
* @param numClasses The number of classes. Positive integer.
* @param userEmbed Units of user embedding. Positive integer. Default is 20.
* @param itemEmbed Units of item embedding. Positive integer. Default is 20.
* @param hiddenLayers Units hiddenLayers for MLP. Array of positive integers.
* Default is Array(40, 20, 10).
* @param includeMF Whether to include Matrix Factorization. Boolean. Default is true.
* @param mfEmbed Units of matrix factorization embedding. Positive integer.
* Default is 20.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class NeuralCF[T: ClassTag](
val userCount: Int,
val itemCount: Int,
val numClasses: Int,
val userEmbed: Int = 20,
val itemEmbed: Int = 20,
val hiddenLayers: Array[Int] = Array(40, 20, 10),
val includeMF: Boolean = true,
val mfEmbed: Int = 20)(implicit ev: TensorNumeric[T])
extends Recommender[T] {
override def buildModel(): AbstractModule[Tensor[T], Tensor[T], T] = {
val input = Input[T](inputShape = Shape(2))
val userSelect = Select[T](1, 0).inputs(input)
val itemSelect = Select[T](1, 1).inputs(input)
val userFlat = Flatten().inputs(userSelect)
val itemFlat = Flatten().inputs(itemSelect)
val mlpUserTable = Embedding[T](userCount + 1, userEmbed, init = "normal")
val mlpItemTable = Embedding[T](itemCount + 1, itemEmbed, init = "normal")
val mlpUserLatent: ModuleNode[T] = Flatten().inputs(mlpUserTable.inputs(userFlat))
val mlpItemLatent: ModuleNode[T] = Flatten().inputs(mlpItemTable.inputs(itemFlat))
val mlpEmbeddedLayer = Merge.merge[T](List(mlpUserLatent, mlpItemLatent), "concat", 1)
val linear1 = Dense[T](hiddenLayers(0), activation = "relu").inputs(mlpEmbeddedLayer)
var mlpLinear = linear1
for (i <- 1 to hiddenLayers.length - 1) {
val linearMid = Dense(hiddenLayers(i), activation = "relu").inputs(mlpLinear)
mlpLinear = linearMid
}
val linearLast = if (includeMF) {
require(mfEmbed > 0, s"please provide meaningful number of embedding units")
val mfUserTable = Embedding[T](userCount + 1, mfEmbed, init = "normal")
val mfItemTable = Embedding[T](itemCount + 1, mfEmbed, init = "normal")
val mfUserLatent: ModuleNode[T] = Flatten().inputs(mfUserTable.inputs(userFlat))
val mfItemLatent: ModuleNode[T] = Flatten().inputs(mfItemTable.inputs(itemFlat))
val mfEmbeddedLayer = Merge.merge[T](List(mfUserLatent, mfItemLatent), "mul", 1)
val concatedModel = Merge.merge[T](List(mlpLinear, mfEmbeddedLayer), "concat", 1)
Dense(numClasses, activation = "softmax").inputs(concatedModel)
}
else {
Dense(numClasses, activation = "softmax").inputs(mlpLinear)
}
val model = Model[T](input, linearLast)
model.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object NeuralCF {
/**
* The factory method to create a NeuralCF instance.
*/
def apply[@specialized(Float, Double) T: ClassTag](
userCount: Int,
itemCount: Int,
numClasses: Int,
userEmbed: Int = 20,
itemEmbed: Int = 20,
hiddenLayers: Array[Int] = Array(40, 20, 10),
includeMF: Boolean = true,
mfEmbed: Int = 20)(implicit ev: TensorNumeric[T]): NeuralCF[T] = {
new NeuralCF[T](userCount, itemCount, numClasses, userEmbed,
itemEmbed, hiddenLayers, includeMF, mfEmbed).build()
}
/**
* Load an existing NeuralCF model (with weights).
*
* @param path The path for the pre-defined model.
* Local file system, HDFS and Amazon S3 are supported.
* HDFS path should be like "hdfs://[host]:[port]/xxx".
* Amazon S3 path should be like "s3a://bucket/xxx".
* @param weightPath The path for pre-trained weights if any. Default is null.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
def loadModel[T: ClassTag](
path: String,
weightPath: String = null)(implicit ev: TensorNumeric[T]): NeuralCF[T] = {
ZooModel.loadModel(path, weightPath).asInstanceOf[NeuralCF[T]]
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy