com.intel.analytics.zoo.pipeline.inference.OpenVINOModel.scala Maven / Gradle / Ivy
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.pipeline.inference
import java.io.{File, IOException}
import java.nio.file.{Files, Paths}
import java.util.{ArrayList, Arrays, UUID, List => JList}
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.zoo.common.Utils.createTmpDir
import com.intel.analytics.zoo.pipeline.api.net.{NetUtils, RegistryMap, SerializationHolder}
import com.intel.analytics.zoo.pipeline.inference.DeviceType.DeviceTypeEnumVal
import com.intel.analytics.zoo.pipeline.inference.OpenVINOModel.OpenVINOModelHolder
import org.apache.commons.io.FileUtils
import org.apache.logging.log4j.LogManager
import org.slf4j.LoggerFactory
import scala.collection.JavaConverters._
class OpenVINOModel(var modelHolder: OpenVINOModelHolder,
var isInt8: Boolean,
var batchSize: Int = -1,
var deviceType: DeviceTypeEnumVal = DeviceType.CPU)
extends AbstractModel with InferenceSupportive with Serializable {
private var isRelease: Boolean = false
@transient
private lazy val supportive: OpenVinoInferenceSupportive = {
OpenVINOModel.logger.info("Prepare OpenVinoInferenceSupportive")
OpenVinoInferenceSupportive.forceLoad()
new OpenVinoInferenceSupportive()
}
@transient
private lazy val executableNetworkReference: Long = {
OpenVINOModel.logger.info("Lazy loading OpenVINO model")
var nativeRef = -1L
try {
val tmpDir = createTmpDir("ZooOpenVINOTempModel")
val randomID = UUID.randomUUID().toString
val modelFile = new File(tmpDir.toString + "/OpenVINO" + randomID + ".xml")
Files.write(Paths.get(modelFile.toURI), modelHolder.modelBytes)
val weightFile = new File(tmpDir.toString + "/OpenVINO" + randomID + ".bin")
Files.write(Paths.get(weightFile.toURI), modelHolder.weightBytes)
nativeRef = if (isInt8) {
OpenVINOModel.logger.info(s"Load int8 model")
supportive.loadOpenVinoIRInt8(modelFile.getAbsolutePath,
weightFile.getAbsolutePath,
deviceType.value, batchSize)
} else {
OpenVINOModel.logger.info(s"Load fp32 model")
supportive.loadOpenVinoIR(modelFile.getAbsolutePath,
weightFile.getAbsolutePath,
deviceType.value, batchSize)
}
FileUtils.deleteQuietly(tmpDir.toFile)
}
catch {
case io: IOException =>
OpenVINOModel.logger.error("error during loading OpenVINO model")
throw io
}
nativeRef
}
override def predict(inputs: JList[JList[JTensor]]): JList[JList[JTensor]] = {
val outputs = new ArrayList[JList[JTensor]]()
inputs.asScala.map(input => {
val tensor = input.get(0)
val output = if (isInt8) {
supportive.predictInt8(executableNetworkReference,
tensor.getData, tensor.getShape)
} else {
supportive.predict(executableNetworkReference,
tensor.getData, tensor.getShape)
}
outputs.add(output)
})
outputs
}
override def predict(inputActivity: Activity): Activity = {
val (inputList, batchSize) = inputActivity.isTable match {
case true =>
val inputTable = inputActivity.toTable
val batchSize = inputTable.length()
(transferBatchTableToJListOfJListOfJTensor(inputTable, batchSize), batchSize)
case false =>
val inputTensor = inputActivity.toTensor[Float]
val batchSize = inputTensor.size(1)
(transferBatchTensorToJListOfJListOfJTensor(inputTensor, batchSize), batchSize)
}
val outputs = predict(inputList)
transferListOfActivityToActivityOfBatch(outputs, batchSize)
}
override def copy(num: Int): Array[AbstractModel] = {
Array(this)
// val arr = new Array[AbstractModel](num)
// val modelBytes = this.modelHolder.modelBytes.clone()
// val weightBytes = this.modelHolder.weightBytes.clone()
// val modelHolder = new OpenVINOModelHolder(modelBytes, weightBytes)
// (0 until num).foreach(i => {
// arr(i) = new OpenVINOModel(modelHolder, isInt8, batchSize, DeviceType.CPU)
// })
// arr
}
override def release(): Unit = {
isReleased match {
case true =>
case false =>
supportive.releaseOpenVINOIR(executableNetworkReference)
isRelease = true
}
}
override def isReleased(): Boolean = {
isRelease
}
}
object OpenVINOModel {
private val modelBytesRegistry = new RegistryMap[(Array[Byte], Array[Byte])]()
val logger = LogManager.getLogger(getClass)
@transient
private lazy val inDriver = NetUtils.isDriver
class OpenVINOModelHolder(@transient var modelBytes: Array[Byte],
@transient var weightBytes: Array[Byte],
private var id: String)
extends SerializationHolder {
def this(modelBytes: Array[Byte], weightBytes: Array[Byte]) =
this(modelBytes, weightBytes, UUID.randomUUID().toString)
def getModelBytes(): Array[Byte] = {
modelBytes
}
def getWeightBytes(): Array[Byte] = {
weightBytes
}
override def writeInternal(out: CommonOutputStream): Unit = {
val (graphDef, _) = modelBytesRegistry.getOrCreate(id) {
(modelBytes, weightBytes)
}
logger.debug("Write OpenVINO model into stream")
out.writeString(id)
if (inDriver) {
out.writeInt(graphDef._1.length)
timing(s"writing " +
s"${graphDef._1.length / 1024 / 1024}Mb openvino model to stream") {
out.write(graphDef._1)
}
out.writeInt(graphDef._2.length)
timing(s"writing " +
s"${graphDef._2.length / 1024 / 1024}Mb openvino weight to stream") {
out.write(graphDef._2)
}
} else {
out.writeInt(0)
}
}
override def readInternal(in: CommonInputStream): Unit = {
id = in.readString()
val (graphDef, _) = modelBytesRegistry.getOrCreate(id) {
val modelLen = in.readInt()
logger.debug("Read OpenVINO model from stream")
assert(modelLen >= 0, "OpenVINO model length should be an non-negative integer")
val localModelBytes = new Array[Byte](modelLen)
timing("reading OpenVINO model from stream") {
var numOfBytes = 0
while (numOfBytes < modelLen) {
val read = in.read(localModelBytes, numOfBytes, modelLen - numOfBytes)
numOfBytes += read
}
}
val weightLen = in.readInt()
assert(weightLen >= 0, "OpenVINO weight length should be an non-negative integer")
var localWeightBytes = new Array[Byte](weightLen)
timing("reading OpenVINO weight from stream") {
var numOfBytes = 0
while (numOfBytes < weightLen) {
val read = in.read(localWeightBytes, numOfBytes, weightLen - numOfBytes)
numOfBytes += read
}
}
(localModelBytes, localWeightBytes)
}
modelBytes = graphDef._1
weightBytes = graphDef._2
id = id
}
}
def apply(modelHolder: OpenVINOModelHolder, isInt8: Boolean): OpenVINOModel = {
new OpenVINOModel(modelHolder, isInt8)
}
def apply(modelHolder: OpenVINOModelHolder, isInt8: Boolean, batchSize: Int): OpenVINOModel = {
new OpenVINOModel(modelHolder, isInt8, batchSize)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy