com.intel.analytics.zoo.pipeline.inference.ModelLoader.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.pipeline.inference
import com.intel.analytics.bigdl.nn.Graph
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.utils.Engine
import com.intel.analytics.bigdl.utils.caffe.CaffeLoader
import com.intel.analytics.bigdl.utils.serializer.ModuleLoader
import com.intel.analytics.zoo.pipeline.api.keras.layers.WordEmbedding
import com.intel.analytics.zoo.pipeline.api.keras.models.{Model, Sequential}
import com.intel.analytics.zoo.pipeline.api.net.{GraphNet, TFNet}
import org.slf4j.LoggerFactory
object ModelLoader extends InferenceSupportive {
val logger = LoggerFactory.getLogger(getClass)
Model
Sequential
GraphNet
WordEmbedding
timing("bigdl init engine") {
System.setProperty("bigdl.localMode", System.getProperty("bigdl.localMode", "true"))
System.setProperty("bigdl.coreNumber", System.getProperty("bigdl.coreNumber", "1"))
Engine.init
}
def loadFloatModel(modelPath: String, weightPath: String)
: AbstractModule[Activity, Activity, Float] = {
timing(s"load model") {
logger.info(s"load model from $modelPath and $weightPath")
val model = ModuleLoader.loadFromFile[Float](modelPath, weightPath)
logger.info(s"loaded model as $model")
model
}
}
def loadFloatModelForCaffe(modelPath: String, weightPath: String)
: AbstractModule[Activity, Activity, Float] = {
timing(s"load model") {
logger.info(s"load model from $modelPath and $weightPath")
val model = CaffeLoader.loadCaffe[Float](modelPath, weightPath)._1.asInstanceOf[Graph[Float]]
logger.info(s"loaded model as $model")
model
}
}
def loadFloatModelForTF(modelPath: String,
config: TFNet.SessionConfig = TFNet.defaultSessionConfig)
: AbstractModule[Activity, Activity, Float] = {
timing("load model") {
logger.info(s"load model from $modelPath")
val model = TFNet(modelPath, config)
logger.info(s"loaded model as $model")
model
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy