com.intel.analytics.zoo.pipeline.inference.OpenVINOModel.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.pipeline.inference
import java.util.{ArrayList, Arrays, List => JList}
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import scala.collection.JavaConverters._
class OpenVINOModel(var executableNetworkReference: Long = -1,
var supportive: OpenVinoInferenceSupportive)
extends AbstractModel with InferenceSupportive with Serializable {
override def predict(inputs: JList[JList[JTensor]]): JList[JList[JTensor]] = {
val outputs = new ArrayList[JList[JTensor]]()
inputs.asScala.map(input => {
val tensor = input.get(0)
val output = supportive.predict(executableNetworkReference, tensor.getData, tensor.getShape)
outputs.add(Arrays.asList({
output
}))
})
outputs
}
override def predict(inputActivity: Activity): Activity = {
val (inputList, batchSize) = inputActivity.isTable match {
case true =>
val inputTable = inputActivity.toTable
val batchSize = inputTable.length()
(transferBatchTableToJListOfJListOfJTensor(inputTable, batchSize), batchSize)
case false =>
val inputTensor = inputActivity.toTensor[Float]
val batchSize = inputTensor.size(1)
(transferBatchTensorToJListOfJListOfJTensor(inputTensor, batchSize), batchSize)
}
val outputs = predict(inputList)
transferListOfActivityToActivityOfBatch(outputs, batchSize)
}
override def predictInt8(inputs: JList[JList[JTensor]]): JList[JList[JTensor]] = {
val outputs = new ArrayList[JList[JTensor]]()
inputs.asScala.map(input => {
val tensor = input.get(0)
val output = supportive.predictInt8(executableNetworkReference,
tensor.getData, tensor.getShape)
outputs.add(Arrays.asList({
output
}))
})
outputs
}
override def predictInt8(inputActivity: Activity): Activity = {
val (inputList, batchSize) = inputActivity.isTable match {
case true =>
val inputTable = inputActivity.toTable
val batchSize = inputTable.length()
(transferBatchTableToJListOfJListOfJTensor(inputTable, batchSize), batchSize)
case false =>
val inputTensor = inputActivity.toTensor[Float]
val batchSize = inputTensor.size(1)
(transferBatchTensorToJListOfJListOfJTensor(inputTensor, batchSize), batchSize)
}
val outputs = predictInt8(inputList)
transferListOfActivityToActivityOfBatch(outputs, batchSize)
}
override def copy(num: Int): Array[AbstractModel] = Array(this)
override def release(): Unit = {
isReleased match {
case true =>
case false =>
supportive.releaseOpenVINOIR(executableNetworkReference)
executableNetworkReference = -1
}
}
override def isReleased(): Boolean = {
executableNetworkReference == -1
}
override def toString: String = s"OpenVinoInferenceModel with " +
s"executableNetworkReference: $executableNetworkReference, supportive: $supportive"
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy