com.intel.analytics.zoo.models.common.Ranker.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.models.common
import com.intel.analytics.bigdl.models.utils.ModelBroadcast
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.zoo.feature.text.{DistributedTextSet, LocalTextSet, TextSet}
import org.apache.log4j.Logger
import scala.reflect.ClassTag
import scala.util.Random
/**
* Trait for Ranking models (e.g., TextMatcher and Ranker) that
* provides validation methods with different metrics.
*/
trait Ranker[T] {
import Ranker.logger
def model: AbstractModule[Activity, Activity, T]
implicit val tag: ClassTag[T]
implicit val ev: com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric[T]
// TODO: May need to provide more types for x if this it to be used by Recommender
protected def evaluate(
x: TextSet,
metrics: (Tensor[T], Tensor[T]) => Double): Double = {
val result = x match {
case distributed: DistributedTextSet =>
val rdd = distributed.rdd
val modelBroad = ModelBroadcast[T]().broadcast(rdd.sparkContext, model)
rdd.mapPartitions(partition => {
val localModel = modelBroad.value()
localModel.evaluate()
partition.map(feature => {
val input = feature.getSample.feature()
val output = localModel.forward(input).toTensor[T]
val target = feature.getSample.label().toTensor[T]
metrics(output, target)
})
}).mean()
case local: LocalTextSet =>
val res = local.array.map(feature => {
val input = feature.getSample.feature()
val output = model.evaluate().forward(input).toTensor[T]
val target = feature.getSample.label().toTensor[T]
metrics(output, target)
})
res.sum / res.length
}
result
}
/**
* Evaluate using mean average precision on TextSet.
*
* @param x TextSet. Each TextFeature should contain Sample with batch features and labels.
* In other words, each Sample should be a batch of records having both positive
* and negative labels.
* @param threshold Double. If label > threshold, then it will be considered as
* a positive record. Default is 0.0.
*/
def evaluateMAP(
x: TextSet,
threshold: Double = 0.0): Double = {
val map = evaluate(x, Ranker.map[T](threshold))
logger.info(s"map: $map")
map
}
/**
* Evaluate using normalized discounted cumulative gain on TextSet.
*
* @param x TextSet. Each TextFeature should contain Sample with batch features and labels.
* In other words, each Sample should be a batch of records having both positive
* and negative labels.
* @param k Positive integer. Rank position.
* @param threshold Double. If label > threshold, then it will be considered as
* a positive record. Default is 0.0.
*/
def evaluateNDCG(
x: TextSet,
k: Int,
threshold: Double = 0.0): Double = {
val ndcg = evaluate(x, Ranker.ndcg[T](k, threshold))
logger.info(s"ndcg@$k: $ndcg")
ndcg
}
}
object Ranker {
val logger: Logger = Logger.getLogger(getClass)
def ndcg[@specialized(Float, Double) T: ClassTag](
k: Int, threshold: Double = 0.0)
(implicit ev: TensorNumeric[T]): (Tensor[T], Tensor[T]) => Double = {
require(k > 0, s"k for NDCG should be a positive integer, but got $k")
def validate(output: Tensor[T], target: Tensor[T])
(implicit ev: TensorNumeric[T]): Double = {
require(output.size().length == 2 && output.size()(1) == 1,
s"output should be of shape (batch, 1), but got ${output.size()}")
require(target.size().length == 2 && target.size()(1) == 1,
s"target should be of shape (batch, 1), but got ${target.size()}")
val yTrue = target.squeezeNewTensor().toArray().map(ev.toType[Double])
val yPred = output.squeezeNewTensor().toArray().map(ev.toType[Double])
val c = Random.shuffle(yTrue.zip(yPred).toList)
val c_g = c.sortBy(_._1).reverse
val c_p = c.sortBy(_._2).reverse
var idcg = 0.0
var dcg = 0.0
for (((g, p), i) <- c_g.zipWithIndex) {
if (i < k && g > threshold) {
idcg += math.pow(2.0, g) / math.log(2.0 + i)
}
}
for (((g, p), i) <- c_p.zipWithIndex) {
if (i < k && g > threshold) {
dcg += math.pow(2.0, g) / math.log(2.0 + i)
}
}
if (idcg == 0.0) 0.0 else dcg / idcg
}
validate
}
def map[@specialized(Float, Double) T: ClassTag](
threshold: Double = 0.0)
(implicit ev: TensorNumeric[T]): (Tensor[T], Tensor[T]) => Double = {
def validate(output: Tensor[T], target: Tensor[T])
(implicit ev: TensorNumeric[T]): Double = {
require(output.size().length == 2 && output.size()(1) == 1,
s"output should be of shape (batch, 1), but got ${output.size()}")
require(target.size().length == 2 && target.size()(1) == 1,
s"target should be of shape (batch, 1), but got ${target.size()}")
val yTrue = target.squeezeNewTensor().toArray().map(ev.toType[Double])
val yPred = output.squeezeNewTensor().toArray().map(ev.toType[Double])
val c = Random.shuffle(yTrue.zip(yPred).toList).sortBy(_._2).reverse
var s = 0.0
var ipos = 0
for (((g, p), i) <- c.zipWithIndex) {
if (g > threshold) {
ipos += 1
s += ipos / (i + 1.0)
}
}
if (ipos == 0) 0.0
else s / ipos
}
validate
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy