com.intel.analytics.zoo.pipeline.inference.PythonInferenceModel.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.pipeline.inference
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.zoo.common.PythonZoo
import java.util.{List => JList, ArrayList}
import scala.reflect.ClassTag
import scala.collection.JavaConverters._
object PythonInferenceModel {
def ofFloat(): PythonInferenceModel[Float] = new PythonInferenceModel[Float]()
def ofDouble(): PythonInferenceModel[Double] = new PythonInferenceModel[Double]()
}
class PythonInferenceModel[T: ClassTag](implicit ev: TensorNumeric[T]) extends PythonZoo[T] {
def createInferenceModel(supportedConcurrentNum: Int = 1): InferenceModel = {
new InferenceModel(supportedConcurrentNum)
}
def inferenceModelLoad(
model: InferenceModel,
modelPath: String,
weightPath: String): Unit = {
model.doLoad(modelPath, weightPath)
}
def inferenceModelLoadCaffe(
model: InferenceModel,
modelPath: String,
weightPath: String): Unit = {
model.doLoadCaffe(modelPath, weightPath)
}
def inferenceModelLoadOpenVINO(
model: InferenceModel,
modelPath: String,
weightPath: String,
batchSize: Int = 0): Unit = {
model.doLoadOpenVINO(modelPath, weightPath, batchSize)
}
def inferenceModelOpenVINOLoadTF(
model: InferenceModel,
modelPath: String,
modelType: String): Unit = {
model.doLoadTF(modelPath, modelType)
}
def inferenceModelOpenVINOLoadTF(
model: InferenceModel,
modelPath: String,
pipelineConfigFilePath: String,
extensionsConfigFilePath: String): Unit = {
model.doLoadTF(modelPath, pipelineConfigFilePath, extensionsConfigFilePath)
}
def inferenceModelOpenVINOLoadTF(model: InferenceModel,
modelPath: String,
objectDetectionModelType: String,
pipelineConfigFilePath: String,
extensionsConfigFilePath: String): Unit = {
model.doLoadTF(modelPath, objectDetectionModelType,
pipelineConfigFilePath, extensionsConfigFilePath)
}
def inferenceModelOpenVINOLoadTF(model: InferenceModel,
modelPath: String,
imageClassificationModelType: String,
checkpointPath: String,
inputShape: JList[Int],
ifReverseInputChannels: Boolean,
meanValues: JList[Double],
scale: Double
): Unit = {
require(inputShape != null, "inputShape can not be null")
require(meanValues != null, "meanValues can not be null")
require(scale != null, "scale can not be null")
model.doLoadTF(modelPath, imageClassificationModelType,
checkpointPath, inputShape.asScala.toArray,
ifReverseInputChannels, meanValues.asScala.toArray.map(_.toFloat), scale.toFloat)
}
def inferenceModelOpenVINOLoadTFAsCalibratedOpenVINO(model: InferenceModel,
modelPath: String,
modelType: String,
checkpointPath: String,
inputShape: JList[Int],
ifReverseInputChannels: Boolean,
meanValues: JList[Double],
scale: Double,
networkType: String,
validationFilePath: String,
subset: Int,
opencvLibPath: String): Unit = {
require(inputShape != null, "inputShape can not be null")
require(meanValues != null, "meanValues can not be null")
require(scale != null, "scale can not be null")
model.doLoadTFAsCalibratedOpenVINO(modelPath, modelType,
checkpointPath, inputShape.asScala.toArray,
ifReverseInputChannels, meanValues.asScala.toArray.map(_.toFloat), scale.toFloat,
networkType, validationFilePath, subset, opencvLibPath)
}
def inferenceModelTensorFlowLoadTF(
model: InferenceModel,
modelPath: String,
intraOpParallelismThreads: Int,
interOpParallelismThreads: Int,
usePerSessionThreads: Boolean): Unit = {
model.doLoadTF(modelPath, intraOpParallelismThreads,
interOpParallelismThreads, usePerSessionThreads)
}
def inferenceModelPredict(
model: InferenceModel,
inputs: JList[com.intel.analytics.bigdl.python.api.JTensor],
inputIsTable: Boolean): JList[Object] = {
val inputActivity = jTensorsToActivity(inputs, inputIsTable)
val outputActivity = model.doPredict(inputActivity)
activityToList(outputActivity)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy