com.intel.analytics.zoo.examples.inception.Train.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.examples.inception
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.models.inception.Inception_v1_NoAuxClassifier
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.optim.SGD.{Poly, SequentialSchedule, Warmup}
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.utils.{Engine, LoggerFilter, T, Table}
import com.intel.analytics.zoo.common.Optim.Fixed
import com.intel.analytics.zoo.common.{EveryEpoch, MaxEpoch, MaxIteration, SeveralIteration}
import com.intel.analytics.zoo.feature.pmem.{MemoryType, PARTITIONED}
import com.intel.analytics.zoo.pipeline.api.keras.layers.utils.EngineRef
import com.intel.analytics.zoo.pipeline.estimator.{ConstantClipping, Estimator, L2NormClipping}
import org.apache.spark.SparkContext
object TrainInceptionV1 {
LoggerFilter.redirectSparkInfoLogs()
import Options._
def main(args: Array[String]): Unit = {
trainParser.parse(args, new TrainParams()).map(param => {
val imageSize = 224
val conf = Engine.createSparkConf().setAppName("Analytics-zoo InceptionV1 Train Example")
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
val trainSet = ImageNet2012(
param.folder + "/train",
sc,
imageSize,
param.batchSize,
EngineRef.getNodeNumber(),
EngineRef.getCoreNumber(),
param.classNumber,
MemoryType.fromString(param.memoryType),
param.opencv
)
val valSet = ImageNet2012Val(
param.folder + "/val",
sc,
imageSize,
param.batchSize,
EngineRef.getNodeNumber(),
EngineRef.getCoreNumber(),
param.classNumber,
opencvPreprocessing = param.opencv
)
val model = if (param.modelSnapshot.isDefined) {
Module.load[Float](param.modelSnapshot.get)
} else if (param.graphModel) {
Inception_v1_NoAuxClassifier.graph(classNum = param.classNumber)
} else {
Inception_v1_NoAuxClassifier(classNum = param.classNumber)
}
val iterationPerEpoch = math.ceil(1281167.toDouble / param.batchSize).toInt
val maxIteration = if (param.maxEpoch.isDefined) {
iterationPerEpoch * param.maxEpoch.get
} else param.maxIteration
val warmupIteration = param.warmupEpoch.getOrElse(0) * iterationPerEpoch
val optimMethod = if (param.stateSnapshot.isDefined) {
OptimMethod.load[Float](param.stateSnapshot.get)
} else {
val warmupDelta = if (warmupIteration == 0) 0.0
else (param.maxLr.getOrElse(param.learningRate) - param.learningRate) / warmupIteration
val polyIteration = maxIteration - warmupIteration
// When you are using incremental training, the training iteration may exceed the
// polyIteration, if you are using MaxEpoch to end the training. So we add a very
// small fixed learning rate to avoid a error thrown by SequentialSchedule.
val lrSchedule = SequentialSchedule(iterationPerEpoch)
.add(Warmup(warmupDelta), warmupIteration)
.add(Poly(0.5, maxIteration), polyIteration)
.add(Fixed(1e-10), Int.MaxValue)
new SGD[Float](learningRate = param.learningRate, learningRateDecay = 0.0,
weightDecay = param.weightDecay, momentum = 0.9, dampening = 0.0, nesterov = false,
learningRateSchedule = lrSchedule)
}
val estimator = if (param.checkpoint.isDefined) {
Estimator[Float](model, optimMethod, param.checkpoint.get)
} else {
Estimator[Float](model, optimMethod)
}
val (checkpointTrigger, endTrigger) = if (param.maxEpoch.isDefined) {
(EveryEpoch(), MaxEpoch(param.maxEpoch.get))
} else {
(SeveralIteration(param.checkpointIteration),
MaxIteration(param.maxIteration))
}
if (param.gradientL2NormThreshold.isDefined) {
estimator.setGradientClippingByL2Norm(param.gradientL2NormThreshold.get)
} else if (param.gradientMin.isDefined && param.gradientMax.isDefined) {
estimator.setConstantGradientClipping(param.gradientMin.get, param.gradientMax.get)
}
estimator.train(trainSet, ClassNLLCriterion[Float](),
endTrigger = Some(endTrigger),
checkPointTrigger = Some(checkpointTrigger),
valSet, Array(new Top1Accuracy[Float], new Top5Accuracy[Float]))
estimator.close()
sc.stop()
})
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy