com.intel.analytics.zoo.feature.text.TextFeature.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2018 Analytics Zoo Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.zoo.feature.text
import com.intel.analytics.bigdl.dataset.Sample
import com.intel.analytics.bigdl.tensor.Tensor
import org.apache.log4j.Logger
import scala.collection.{Set, mutable}
import scala.reflect.ClassTag
/**
* Each TextFeature keeps information of a single text record.
* It can include various status (if any) of a text,
* e.g. original text content, uri, category label, tokens, index representation
* of tokens, BigDL Sample representation, prediction result and so on.
* It uses a HashMap to store all these data.
* Each key is a string that can be used to identify the corresponding value.
*/
class TextFeature extends Serializable {
import TextFeature.logger
private def this(text: String, label: Option[Int], uri: String) {
this
if (text != null) {
state(TextFeature.text) = text
}
if (label.nonEmpty) {
state(TextFeature.label) = label.get
}
if (uri != null) {
state(TextFeature.uri) = uri
}
}
private val state = new mutable.HashMap[String, Any]()
def contains(key: String): Boolean = state.contains(key)
def apply[T](key: String): T = {
if (contains(key)) {
state(key).asInstanceOf[T]
} else {
logger.warn(s"TextFeature doesn't contain $key")
null.asInstanceOf[T]
}
}
def update(key: String, value: Any): Unit = state(key) = value
def keys(): Set[String] = state.keySet
/**
* Whether the TextFeature contains label.
*/
def hasLabel: Boolean = state.contains(TextFeature.label)
/**
* Set the label for the TextFeature.
* @param label Integer.
* @return The TextFeature with label.
*/
def setLabel(label: Int): this.type = {
if (hasLabel) {
logger.warn(s"Label exists, overwriting the original label $label")
}
state(TextFeature.label) = label
this
}
/**
* Get the label of the TextFeature.
* If no label is stored, -1 will be returned.
*/
def getLabel: Int = {
if (hasLabel) {
apply[Int](TextFeature.label)
}
else {
logger.warn("No label is stored in the TextFeature")
-1
}
}
/**
* Get the text content of the TextFeature.
* Return null if it doesn't exist.
*/
def getText: String = apply[String](TextFeature.text)
/**
* Get the identifier of the TextFeature.
* Return null if it doesn't exist.
*/
def getURI: String = apply[String](TextFeature.uri)
/**
* Get the tokens of the TextFeature.
* If text hasn't been segmented, null will be returned.
*/
def getTokens: Array[String] = apply[Array[String]](TextFeature.tokens)
/**
* Get the token indices of the TextFeature.
* If text hasn't been segmented or transformed from word to index, null will be returned.
*/
def getIndices: Array[Float] = apply[Array[Float]](TextFeature.indexedTokens)
/**
* Get the Sample representation of the TextFeature.
* If the TextFeature hasn't been transformed to Sample, null will be returned.
*/
def getSample: Sample[Float] = apply[Sample[Float]](TextFeature.sample)
/**
* Get the prediction probability distribution of the TextFeature.
* If the TextFeature hasn't been predicted by a model, null will be returned.
*/
def getPredict[T: ClassTag]: Tensor[T] = apply[Tensor[T]](TextFeature.predict)
}
object TextFeature {
/**
* Key for the identifier of the TextFeature.
* It can be the id of the text in your corpus or the uri of the file.
* Value should be a String.
*/
val uri = "uri"
/**
* Key for the original text content.
* Value should be a String.
*/
val text = "text"
/**
* Key for the label for the original text content.
* Value should be an integer.
*/
val label = "label"
/**
* Key for the tokens after doing tokenization (or other token-based transformation such as
* normalization) on the original text.
* Value should be an array of String.
*/
val tokens = "tokens"
/**
* Key for the indices corresponding to the tokens after performing word2idx.
* Value should be an array of Float.
*/
val indexedTokens = "indexedTokens"
/**
* Key for the sample (feature and label if any).
* Value should be a BigDL Sample[Float].
*/
val sample = "sample"
/**
* Key for the text prediction result.
* Value should be a BigDL Tensor.
*/
val predict = "predict"
val logger: Logger = Logger.getLogger(getClass)
/**
* Create a TextFeature without label.
*/
def apply(text: String, uri: String = null): TextFeature = {
new TextFeature(text, None, uri)
}
/**
* Create a TextFeature with label.
* It is recommended that label starts from 0.
*/
def apply(text: String, label: Int): TextFeature = {
new TextFeature(text, Some(label), null)
}
/**
* Create a TextFeature with label and uri.
* It is recommended that label starts from 0.
*/
def apply(text: String, label: Int, uri: String): TextFeature = {
new TextFeature(text, Some(label), uri)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy