
com.io7m.jtensors.VectorM4F Maven / Gradle / Ivy
/*
* Copyright © 2013 http://io7m.com
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
* IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package com.io7m.jtensors;
import javax.annotation.Nonnull;
import javax.annotation.concurrent.NotThreadSafe;
import com.io7m.jaux.AlmostEqualFloat;
import com.io7m.jaux.functional.Pair;
/**
*
* A four-dimensional mutable vector type with single precision elements.
*
*
*
* Values of this type cannot be accessed safely from multiple threads without
* explicit synchronization.
*
*/
@NotThreadSafe public class VectorM4F implements VectorReadable4F
{
/**
* Calculate the absolute values of the elements in vector v
,
* saving the result to out
.
*
* @param v
* The input vector
* @param out
* The output vector
*
* @return (abs v.x, abs v.y, abs v.z, abs.w)
*/
public final static @Nonnull VectorM4F absolute(
final @Nonnull VectorReadable4F v,
final @Nonnull VectorM4F out)
{
final float x = Math.abs(v.getXF());
final float y = Math.abs(v.getYF());
final float z = Math.abs(v.getZF());
final float w = Math.abs(v.getWF());
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Calculate the absolute values of the elements in vector v
,
* modifying the vector in-place.
*
* @param v
* The input vector
*
* @return (abs v.x, abs v.y, abs v.z, abs v.w)
*/
public final static @Nonnull VectorM4F absoluteInPlace(
final @Nonnull VectorM4F v)
{
return VectorM4F.absolute(v, v);
}
/**
* Calculate the element-wise sum of the vectors v0
and
* v1
, saving the result to out
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
* @param out
* The output vector
*
* @return (v0.x + v1.x, v0.y + v1.y, v0.z + v1.z, v0.w + v1.w)
*/
public final static @Nonnull VectorM4F add(
final @Nonnull VectorReadable4F v0,
final @Nonnull VectorReadable4F v1,
final @Nonnull VectorM4F out)
{
final float x = v0.getXF() + v1.getXF();
final float y = v0.getYF() + v1.getYF();
final float z = v0.getZF() + v1.getZF();
final float w = v0.getWF() + v1.getWF();
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Calculate the element-wise sum of the vectors v0
and
* v1
, saving the result to v0
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
*
* @return (v0.x + v1.x, v0.y + v1.y, v0.z + v1.z, v0.w + v1.w)
*/
public final static @Nonnull VectorM4F addInPlace(
final @Nonnull VectorM4F v0,
final @Nonnull VectorReadable4F v1)
{
return VectorM4F.add(v0, v1, v0);
}
/**
* Calculate the element-wise sum of the vectors v0
and the
* element-wise product of v1
and r
, saving the
* result to out
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
* @param out
* The output vector
* @param r
* The scaling value
*
* @return (v0.x + (v1.x * r), v0.y + (v1.y * r), v0.z + (v1.z * r), v0.w + (v1.w * r))
*/
public final static @Nonnull VectorM4F addScaled(
final @Nonnull VectorReadable4F v0,
final @Nonnull VectorReadable4F v1,
final double r,
final @Nonnull VectorM4F out)
{
final float x = (float) (v0.getXF() + (v1.getXF() * r));
final float y = (float) (v0.getYF() + (v1.getYF() * r));
final float z = (float) (v0.getZF() + (v1.getZF() * r));
final float w = (float) (v0.getWF() + (v1.getWF() * r));
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Calculate the element-wise sum of the vectors v0
and the
* element-wise product of v1
and r
, saving the
* result to v0
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
* @param r
* The scaling value
*
* @return (v0.x + (v1.x * r), v0.y + (v1.y * r), v0.z + (v1.z * r), v0.w + (v1.w * r))
*/
public final static @Nonnull VectorM4F addScaledInPlace(
final @Nonnull VectorM4F v0,
final @Nonnull VectorReadable4F v1,
final double r)
{
return VectorM4F.addScaled(v0, v1, r, v0);
}
/**
* Determine whether or not the vectors va
and vb
* are equal to within the degree of error given in context
.
*
* @see AlmostEqualFloat#almostEqual(ContextRelative, float, float)
*
* @param context
* The equality context
* @param va
* The left input vector
* @param vb
* The right input vector
* @since 5.0.0
*/
public final static boolean almostEqual(
final @Nonnull AlmostEqualFloat.ContextRelative context,
final @Nonnull VectorReadable4F va,
final @Nonnull VectorReadable4F vb)
{
final boolean xs =
AlmostEqualFloat.almostEqual(context, va.getXF(), vb.getXF());
final boolean ys =
AlmostEqualFloat.almostEqual(context, va.getYF(), vb.getYF());
final boolean zs =
AlmostEqualFloat.almostEqual(context, va.getZF(), vb.getZF());
final boolean ws =
AlmostEqualFloat.almostEqual(context, va.getWF(), vb.getWF());
return xs && ys && zs && ws;
}
/**
* Clamp the elements of the vector v
to the range
* [minimum .. maximum]
inclusive, saving the result to
* out
.
*
* @param v
* The input vector
* @param minimum
* The minimum allowed value
* @param maximum
* The maximum allowed value
* @param out
* The output vector
*
* @return A vector with both elements equal to at most maximum
* and at least minimum
*/
public final static @Nonnull VectorM4F clamp(
final @Nonnull VectorReadable4F v,
final double minimum,
final double maximum,
final @Nonnull VectorM4F out)
{
final float x = (float) Math.min(Math.max(v.getXF(), minimum), maximum);
final float y = (float) Math.min(Math.max(v.getYF(), minimum), maximum);
final float z = (float) Math.min(Math.max(v.getZF(), minimum), maximum);
final float w = (float) Math.min(Math.max(v.getWF(), minimum), maximum);
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Clamp the elements of the vector v
to the inclusive range
* given by the corresponding elements in minimum
and
* maximum
, saving the result to out
.
*
* @param v
* The input vector
* @param minimum
* The vector containing the minimum acceptable values
* @param maximum
* The vector containing the maximum acceptable values
* @param out
* The output vector
*
* @return (min(max(v.x, minimum.x), maximum.x), min(max(v.y, minimum.y), maximum.y), min(max(v.z, minimum.z), maximum.z), min(max(v.w, minimum.w), maximum.w))
*/
public final static @Nonnull VectorM4F clampByVector(
final @Nonnull VectorReadable4F v,
final @Nonnull VectorReadable4F minimum,
final @Nonnull VectorReadable4F maximum,
final @Nonnull VectorM4F out)
{
final float x =
Math.min(Math.max(v.getXF(), minimum.getXF()), maximum.getXF());
final float y =
Math.min(Math.max(v.getYF(), minimum.getYF()), maximum.getYF());
final float z =
Math.min(Math.max(v.getZF(), minimum.getZF()), maximum.getZF());
final float w =
Math.min(Math.max(v.getWF(), minimum.getWF()), maximum.getWF());
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Clamp the elements of the vector v
to the inclusive range
* given by the corresponding elements in minimum
and
* maximum
, saving the result to v
.
*
* @param v
* The input vector
* @param minimum
* The vector containing the minimum acceptable values
* @param maximum
* The vector containing the maximum acceptable values
*
* @return (min(max(v.x, minimum.x), maximum.x), min(max(v.y, minimum.y), maximum.y), min(max(v.z, minimum.z), maximum.z), min(max(v.w, minimum.w), maximum.w))
*/
public final static @Nonnull VectorM4F clampByVectorInPlace(
final @Nonnull VectorM4F v,
final @Nonnull VectorReadable4F minimum,
final @Nonnull VectorReadable4F maximum)
{
return VectorM4F.clampByVector(v, minimum, maximum, v);
}
/**
* Clamp the elements of the vector v
to the range
* [minimum .. maximum]
inclusive, saving the result to
* v
.
*
* @param v
* The input vector
* @param minimum
* The minimum allowed value
* @param maximum
* The maximum allowed value
*
* @return A vector with both elements equal to at most maximum
* and at least minimum
, in v
*/
public final static @Nonnull VectorM4F clampInPlace(
final @Nonnull VectorM4F v,
final float minimum,
final float maximum)
{
return VectorM4F.clamp(v, minimum, maximum, v);
}
/**
* Clamp the elements of the vector v
to the range
* [-Infinity .. maximum]
inclusive, saving the result to
* out
.
*
* @param v
* The input vector
* @param out
* The output vector
* @param maximum
* The maximum allowed value
*
* @return A vector with both elements equal to at most maximum
*/
public final static @Nonnull VectorM4F clampMaximum(
final @Nonnull VectorReadable4F v,
final float maximum,
final @Nonnull VectorM4F out)
{
final float x = Math.min(v.getXF(), maximum);
final float y = Math.min(v.getYF(), maximum);
final float z = Math.min(v.getZF(), maximum);
final float w = Math.min(v.getWF(), maximum);
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Clamp the elements of the vector v
to the inclusive range
* given by the corresponding elements in maximum
, saving the
* result to out
.
*
* @param v
* The input vector
* @param maximum
* The vector containing the maximum acceptable values
* @param out
* The output vector
*
* @return (min(v.x, maximum.x), min(v.y, maximum.y), min(v.z, maximum.z), min(v.w, maximum.w))
*/
public final static @Nonnull VectorM4F clampMaximumByVector(
final @Nonnull VectorReadable4F v,
final @Nonnull VectorReadable4F maximum,
final @Nonnull VectorM4F out)
{
final float x = Math.min(v.getXF(), maximum.getXF());
final float y = Math.min(v.getYF(), maximum.getYF());
final float z = Math.min(v.getZF(), maximum.getZF());
final float w = Math.min(v.getWF(), maximum.getWF());
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Clamp the elements of the vector v
to the inclusive range
* given by the corresponding elements in maximum
, saving the
* result to v
.
*
* @param v
* The input vector
* @param maximum
* The vector containing the maximum acceptable values
*
* @return (min(v.x, maximum.x), min(v.y, maximum.y), min(v.z, maximum.z), min(v.w, maximum.w))
*/
public final static @Nonnull VectorM4F clampMaximumByVectorInPlace(
final @Nonnull VectorM4F v,
final @Nonnull VectorReadable4F maximum)
{
return VectorM4F.clampMaximumByVector(v, maximum, v);
}
/**
* Clamp the elements of the vector v
to the range
* [-Infinity .. maximum]
inclusive, saving the result to
* v
.
*
* @param v
* The input vector
* @param maximum
* The maximum allowed value
*
* @return A vector with both elements equal to at most maximum
* , in v
*/
public final static @Nonnull VectorM4F clampMaximumInPlace(
final @Nonnull VectorM4F v,
final float maximum)
{
return VectorM4F.clampMaximum(v, maximum, v);
}
/**
* Clamp the elements of the vector v
to the range
* [minimum .. Infinity]
inclusive, saving the result to
* out
.
*
* @param v
* The input vector
* @param out
* The output vector
* @param minimum
* The minimum allowed value
*
* @return A vector with both elements equal to at least
* minimum
*/
public final static @Nonnull VectorM4F clampMinimum(
final @Nonnull VectorReadable4F v,
final float minimum,
final @Nonnull VectorM4F out)
{
final float x = Math.max(v.getXF(), minimum);
final float y = Math.max(v.getYF(), minimum);
final float z = Math.max(v.getZF(), minimum);
final float w = Math.max(v.getWF(), minimum);
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Clamp the elements of the vector v
to the inclusive range
* given by the corresponding elements in minimum
, saving the
* result to out
.
*
* @param v
* The input vector
* @param out
* The output vector
* @param minimum
* The vector containing the minimum acceptable values
*
* @return (max(v.x, minimum.x), max(v.y, minimum.y), max(v.z, minimum.z), max(v.w, minimum.w))
*/
public final static @Nonnull VectorM4F clampMinimumByVector(
final @Nonnull VectorReadable4F v,
final @Nonnull VectorReadable4F minimum,
final @Nonnull VectorM4F out)
{
final float x = Math.max(v.getXF(), minimum.getXF());
final float y = Math.max(v.getYF(), minimum.getYF());
final float z = Math.max(v.getZF(), minimum.getZF());
final float w = Math.max(v.getWF(), minimum.getWF());
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Clamp the elements of the vector v
to the inclusive range
* given by the corresponding elements in minimum
, saving the
* result to v
.
*
* @param v
* The input vector
* @param minimum
* The vector containing the minimum acceptable values
*
* @return (max(v.x, minimum.x), max(v.y, minimum.y), max(v.z, minimum.z), max(v.w, minimum.w))
* , in v
*/
public final static @Nonnull VectorM4F clampMinimumByVectorInPlace(
final @Nonnull VectorM4F v,
final @Nonnull VectorReadable4F minimum)
{
return VectorM4F.clampMinimumByVector(v, minimum, v);
}
/**
* Clamp the elements of the vector v
to the range
* [minimum .. Infinity]
inclusive, saving the result to
* v
.
*
* @param v
* The input vector
* @param minimum
* The minimum allowed value
*
* @return A vector with both elements equal to at least
* minimum
, in v
.
*/
public final static @Nonnull VectorM4F clampMinimumInPlace(
final @Nonnull VectorM4F v,
final float minimum)
{
return VectorM4F.clampMinimum(v, minimum, v);
}
/**
* Copy all elements of the vector input
to the vector
* output
.
*
* @param input
* The input vector
* @param output
* The output vector
*
* @return output
*/
public final static @Nonnull VectorM4F copy(
final @Nonnull VectorReadable4F input,
final @Nonnull VectorM4F output)
{
output.x = input.getXF();
output.y = input.getYF();
output.z = input.getZF();
output.w = input.getWF();
return output;
}
/**
* Calculate the distance between the two vectors v0
and
* v1
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
*
* @return The distance between the two vectors.
*/
public final static double distance(
final @Nonnull VectorReadable4F v0,
final @Nonnull VectorReadable4F v1)
{
final @Nonnull VectorM4F vr = new VectorM4F();
return VectorM4F.magnitude(VectorM4F.subtract(v0, v1, vr));
}
/**
* Calculate the scalar product of the vectors v0
and
* v1
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
*
* @return The scalar product of the two vectors
*/
public final static double dotProduct(
final @Nonnull VectorReadable4F v0,
final @Nonnull VectorReadable4F v1)
{
final double x = v0.getXF() * v1.getXF();
final double y = v0.getYF() * v1.getYF();
final double z = v0.getZF() * v1.getZF();
final double w = v0.getWF() * v1.getWF();
return x + y + z + w;
}
/**
* Linearly interpolate between v0
and v1
by the
* amount alpha
, saving the result to r
.
*
* The alpha
parameter controls the degree of interpolation,
* such that:
*
*
* interpolateLinear(v0, v1, 0.0, r) -> r = v0
* interpolateLinear(v0, v1, 1.0, r) -> r = v1
*
*
* @param v0
* The left input vector.
* @param v1
* The right input vector.
* @param alpha
* The interpolation value, between 0.0
and
* 1.0
.
* @param r
* The result vector.
*
* @return r
*/
public final static @Nonnull VectorM4F interpolateLinear(
final @Nonnull VectorReadable4F v0,
final @Nonnull VectorReadable4F v1,
final double alpha,
final @Nonnull VectorM4F r)
{
final @Nonnull VectorM4F w0 = new VectorM4F();
final @Nonnull VectorM4F w1 = new VectorM4F();
VectorM4F.scale(v0, 1.0f - alpha, w0);
VectorM4F.scale(v1, alpha, w1);
return VectorM4F.add(w0, w1, r);
}
/**
* Calculate the magnitude of the vector v
.
*
* Correspondingly, magnitude(normalize(v)) == 1.0
.
*
* @param v
* The input vector
*
* @return The magnitude of the input vector
*/
public final static double magnitude(
final @Nonnull VectorReadable4F v)
{
return Math.sqrt(VectorM4F.magnitudeSquared(v));
}
/**
* Calculate the squared magnitude of the vector v
.
*
* @param v
* The input vector
*
* @return The squared magnitude of the input vector
*/
public final static double magnitudeSquared(
final @Nonnull VectorReadable4F v)
{
return VectorM4F.dotProduct(v, v);
}
/**
* Returns a vector with the same orientation as v
but with
* magnitude equal to 1.0
in out
. The function
* returns the zero vector iff the input is the zero vector.
*
* @param v
* The input vector
* @param out
* The output vector
*
* @return out
*/
public final static @Nonnull VectorM4F normalize(
final @Nonnull VectorReadable4F v,
final @Nonnull VectorM4F out)
{
final double m = VectorM4F.magnitudeSquared(v);
if (m > 0.0) {
final double reciprocal = 1.0 / Math.sqrt(m);
return VectorM4F.scale(v, reciprocal, out);
}
out.x = v.getXF();
out.y = v.getYF();
out.z = v.getZF();
out.w = v.getWF();
return out;
}
/**
* Returns a vector with the same orientation as v
but with
* magnitude equal to 1.0
in v
. The function
* returns the zero vector iff the input is the zero vector.
*
* @param v
* The input vector
*
* @return v
*/
public final static @Nonnull VectorM4F normalizeInPlace(
final @Nonnull VectorM4F v)
{
return VectorM4F.normalize(v, v);
}
/**
*
* Orthonormalize and return the vectors v0
and v1
* .
*
*
* See GSP
*
*
* @return A pair (v0, v1)
, orthonormalized.
*
* @since 5.0.0
*/
public final static @Nonnull Pair orthoNormalize(
final @Nonnull VectorReadable4F v0,
final @Nonnull VectorReadable4F v1)
{
final VectorM4F v0n = new VectorM4F();
final VectorM4F vr = new VectorM4F();
final VectorM4F vp = new VectorM4F();
VectorM4F.normalize(v0, v0n);
VectorM4F.scale(v0n, VectorM4F.dotProduct(v1, v0n), vp);
VectorM4F.normalizeInPlace(VectorM4F.subtract(v1, vp, vr));
return new Pair(v0n, vr);
}
/**
*
* Orthonormalize and the vectors v0
and v1
.
*
*
* See GSP
*
*
* @since 5.0.0
*/
public final static void orthoNormalizeInPlace(
final @Nonnull VectorM4F v0,
final @Nonnull VectorM4F v1)
{
final VectorM4F projection = new VectorM4F();
VectorM4F.normalizeInPlace(v0);
VectorM4F.scale(v0, VectorM4F.dotProduct(v1, v0), projection);
VectorM4F.subtractInPlace(v1, projection);
VectorM4F.normalizeInPlace(v1);
}
/**
* Calculate the projection of the vector p
onto the vector
* q
, saving the result in r
.
*
* @return ((dotProduct p q) / magnitudeSquared q) * q
*/
public final static @Nonnull VectorM4F projection(
final @Nonnull VectorReadable4F p,
final @Nonnull VectorReadable4F q,
final @Nonnull VectorM4F r)
{
final double dot = VectorM4F.dotProduct(p, q);
final double qms = VectorM4F.magnitudeSquared(q);
final double s = dot / qms;
return VectorM4F.scale(p, s, r);
}
/**
* Scale the vector v
by the scalar r
, saving the
* result to out
.
*
* @param v
* The input vector
* @param r
* The scaling value
* @param out
* The output vector
*
* @return (v.x * r, v.y * r, v.z * r, v.w * r)
*/
public final static @Nonnull VectorM4F scale(
final @Nonnull VectorReadable4F v,
final double r,
final @Nonnull VectorM4F out)
{
final float x = (float) (v.getXF() * r);
final float y = (float) (v.getYF() * r);
final float z = (float) (v.getZF() * r);
final float w = (float) (v.getWF() * r);
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Scale the vector v
by the scalar r
, saving the
* result to v
.
*
* @param v
* The input vector
* @param r
* The scaling value
*
* @return (v.x * r, v.y * r, v.z * r, v.w * r)
*/
public final static @Nonnull VectorM4F scaleInPlace(
final @Nonnull VectorM4F v,
final double r)
{
return VectorM4F.scale(v, r, v);
}
/**
* Subtract the vector v1
from the vector v0
,
* saving the result to out
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
* @param out
* The output vector
*
* @return (v0.x - v1.x, v0.y - v1.y, v0.z - v1.z, v0.w - v1.w)
*/
public final static @Nonnull VectorM4F subtract(
final @Nonnull VectorReadable4F v0,
final @Nonnull VectorReadable4F v1,
final @Nonnull VectorM4F out)
{
final float x = v0.getXF() - v1.getXF();
final float y = v0.getYF() - v1.getYF();
final float z = v0.getZF() - v1.getZF();
final float w = v0.getWF() - v1.getWF();
out.x = x;
out.y = y;
out.z = z;
out.w = w;
return out;
}
/**
* Subtract the vector v1
from the vector v0
,
* saving the result to v0
.
*
* @param v0
* The left input vector
* @param v1
* The right input vector
*
* @return (v0.x - v1.x, v0.y - v1.y, v0.z - v1.z, v0.w - v1.w)
*/
public final static @Nonnull VectorM4F subtractInPlace(
final @Nonnull VectorM4F v0,
final @Nonnull VectorReadable4F v1)
{
return VectorM4F.subtract(v0, v1, v0);
}
public float x = 0.0f;
public float y = 0.0f;
public float z = 0.0f;
public float w = 1.0f;
/**
* Default constructor, initializing the vector with values
* [0.0, 0.0, 0.0, 1.0]
.
*/
public VectorM4F()
{
}
/**
* Construct a vector initialized with the given values.
*/
public VectorM4F(
final float x,
final float y,
final float z,
final float w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/**
* Construct a vector initialized with the values given in the vector
* v
.
*/
public VectorM4F(
final @Nonnull VectorReadable4F v)
{
this.x = v.getXF();
this.y = v.getYF();
this.z = v.getZF();
this.w = v.getWF();
}
@Override public final boolean equals(
final Object obj)
{
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (this.getClass() != obj.getClass()) {
return false;
}
final @Nonnull VectorM4F other = (VectorM4F) obj;
if (Float.floatToIntBits(this.w) != Float.floatToIntBits(other.w)) {
return false;
}
if (Float.floatToIntBits(this.x) != Float.floatToIntBits(other.x)) {
return false;
}
if (Float.floatToIntBits(this.y) != Float.floatToIntBits(other.y)) {
return false;
}
if (Float.floatToIntBits(this.z) != Float.floatToIntBits(other.z)) {
return false;
}
return true;
}
@Override public final float getWF()
{
return this.w;
}
@Override public final float getXF()
{
return this.x;
}
@Override public final float getYF()
{
return this.y;
}
@Override public final float getZF()
{
return this.z;
}
@Override public final int hashCode()
{
final int prime = 31;
int result = 1;
result = (prime * result) + Float.floatToIntBits(this.w);
result = (prime * result) + Float.floatToIntBits(this.x);
result = (prime * result) + Float.floatToIntBits(this.y);
result = (prime * result) + Float.floatToIntBits(this.z);
return result;
}
@Override public final String toString()
{
final StringBuilder builder = new StringBuilder();
builder.append("[VectorM4F ");
builder.append(this.x);
builder.append(" ");
builder.append(this.y);
builder.append(" ");
builder.append(this.z);
builder.append(" ");
builder.append(this.w);
builder.append("]");
return builder.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy