
com.irurueta.ar.calibration.estimators.LMSEDualAbsoluteQuadricEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of irurueta-ar Show documentation
Show all versions of irurueta-ar Show documentation
Augmented Reality and 3D reconstruction library
/*
* Copyright (C) 2016 Alberto Irurueta Carro ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.irurueta.ar.calibration.estimators;
import com.irurueta.algebra.AlgebraException;
import com.irurueta.algebra.Matrix;
import com.irurueta.algebra.SingularValueDecomposer;
import com.irurueta.ar.calibration.DualAbsoluteQuadric;
import com.irurueta.geometry.PinholeCamera;
import com.irurueta.geometry.estimators.LockedException;
import com.irurueta.geometry.estimators.NotReadyException;
import com.irurueta.numerical.NumericalException;
import java.util.List;
/**
* Implementation of a Dual Absolute Quadric estimator using an LMSE (Least Mean
* Squared Error) solution for provided pinhole cameras.
* This implementation assumes that:
* - cameras are arbitrary (usually the initial camera is the identity and must
* be discarded) as it creates a numerical degeneracy.
* - all provided cameras have the same intrinsic parameters.
* - it is assumed that skewness is zero, the principal point is at the center
* of the image plane (zero), and both horizontal and vertical focal planes are
* equal.
*/
@SuppressWarnings("DuplicatedCode")
public class LMSEDualAbsoluteQuadricEstimator extends
DualAbsoluteQuadricEstimator {
/**
* Indicates if by default an LMSE (Least Mean Square Error) solution is
* allowed if more pinhole cameras than the minimum are provided.
*/
public static final boolean DEFAULT_ALLOW_LMSE_SOLUTION = false;
/**
* Indicates if by default an LMSE (Least Mean Square Error) solution is
* allowed if more pinhole cameras than the minimum are provided.
*/
private boolean mAllowLMSESolution;
/**
* Constructor.
*/
public LMSEDualAbsoluteQuadricEstimator() {
super();
mAllowLMSESolution = DEFAULT_ALLOW_LMSE_SOLUTION;
}
/**
* Constructor with listener.
*
* @param listener listener to be notified of events such as when estimation
* starts, ends or estimation progress changes.
*/
public LMSEDualAbsoluteQuadricEstimator(
final DualAbsoluteQuadricEstimatorListener listener) {
super(listener);
mAllowLMSESolution = DEFAULT_ALLOW_LMSE_SOLUTION;
}
/**
* Constructor.
*
* @param cameras list of cameras used to estimate the Dual Absolute Quadric
* (DAQ).
* @throws IllegalArgumentException if list of cameras is null or invalid
* for default constraints.
*/
public LMSEDualAbsoluteQuadricEstimator(final List cameras) {
super(cameras);
mAllowLMSESolution = DEFAULT_ALLOW_LMSE_SOLUTION;
}
/**
* Constructor.
*
* @param cameras list of cameras used to estimate the Dual Absolute Quadric
* (DAQ).
* @param listener listener to be notified of events such as when estimation
* starts, ends or estimation progress changes.
* @throws IllegalArgumentException if list of cameras is null or invalid
* for default constraints.
*/
public LMSEDualAbsoluteQuadricEstimator(final List cameras,
final DualAbsoluteQuadricEstimatorListener listener) {
super(cameras, listener);
mAllowLMSESolution = DEFAULT_ALLOW_LMSE_SOLUTION;
}
/**
* Indicates if an LMSE (Least Mean Square Error) solution is allowed if
* more pinhole cameras than the minimum are provided. If false, the
* exceeding correspondences will be ignored and only the 2 first ones
* will be used.
*
* @return true if LMSE solution is allowed, false otherwise.
*/
public boolean isLMSESolutionAllowed() {
return mAllowLMSESolution;
}
/**
* Specifies if an LMSE (Least Mean Square Error) solution is allowed if
* more pinhole cameras than the minimum are provided. If false, the
* exceeding correspondences will be ignored and only the 2 first ones
* will be used.
*
* @param allowed true if LMSE solution is allowed, false otherwise.
* @throws LockedException if estimator is locked.
*/
public void setLMSESolutionAllowed(final boolean allowed) throws LockedException {
if (isLocked()) {
throw new LockedException();
}
mAllowLMSESolution = allowed;
}
/**
* Indicates whether current constraints are enough to start the estimation.
* In order to obtain a linear solution for the DAQ estimation, we need at
* least the principal point at origin constraint.
*
* @return true if constraints are valid, false otherwise.
*/
@Override
public boolean areValidConstraints() {
final boolean valid = super.areValidConstraints();
if (!valid) {
return false;
}
if (mAllowLMSESolution) {
return !(mFocalDistanceAspectRatioKnown && mSingularityEnforced);
} else {
return true;
}
}
/**
* Estimates the Dual Absolute Quadric using provided cameras.
*
* @param result instance where estimated Dual Absolute Quadric (DAQ) will
* be stored.
* @throws LockedException if estimator is locked.
* @throws NotReadyException if no valid input data has already been
* provided.
* @throws DualAbsoluteQuadricEstimatorException if an error occurs during
* estimation, usually because input data is not valid or numerically
* unstable.
*/
@Override
public void estimate(final DualAbsoluteQuadric result)
throws LockedException, NotReadyException,
DualAbsoluteQuadricEstimatorException {
if (isLocked()) {
throw new LockedException();
}
if (!isReady()) {
throw new NotReadyException();
}
try {
mLocked = true;
if (mListener != null) {
mListener.onEstimateStart(this);
}
if (mPrincipalPointAtOrigin) {
if (mZeroSkewness) {
if (mFocalDistanceAspectRatioKnown) {
estimateZeroSkewnessPrincipalPointAtOriginAndKnownFocalDistanceAspectRatio(
result);
} else {
estimateZeroSkewnessAndPrincipalPointAtOrigin(result);
}
} else {
estimatePrincipalPointAtOrigin(result);
}
}
if (mListener != null) {
mListener.onEstimateEnd(this);
}
} finally {
mLocked = false;
}
}
/**
* Returns type of Dual Absolute Quadric estimator.
*
* @return type of DAQ estimator.
*/
@Override
public DualAbsoluteQuadricEstimatorType getType() {
return DualAbsoluteQuadricEstimatorType.
LMSE_DUAL_ABSOLUTE_QUADRIC_ESTIMATOR;
}
/**
* Gets minimum number of equations required to find a solution.
*
* @return minimum number of equations required to find a solution.
*/
private int getMinRequiredEquations() {
return mSingularityEnforced ? MIN_REQUIRED_EQUATIONS - 1 :
MIN_REQUIRED_EQUATIONS;
}
/**
* Estimates Dual Absolute Quadric (DAQ) assuming that skewness is zero,
* principal point is located at origin of coordinates and that aspect ratio
* of focal distances is known.
*
* @param result instance where resulting estimated Dual Absolute Quadric
* will be stored.
* @throws DualAbsoluteQuadricEstimatorException if an error occurs during
* estimation, usually because repeated cameras are provided, or
* cameras corresponding to critical motion sequences such as pure
* parallel translations are provided, where no additional data is
* really provided.
*/
private void estimateZeroSkewnessPrincipalPointAtOriginAndKnownFocalDistanceAspectRatio(
final DualAbsoluteQuadric result)
throws DualAbsoluteQuadricEstimatorException {
try {
final int nCams = mCameras.size();
final Matrix a;
if (isLMSESolutionAllowed()) {
a = new Matrix(4 * nCams, DualAbsoluteQuadric.N_PARAMS);
} else {
a = new Matrix(mSingularityEnforced ? 8 : 12,
DualAbsoluteQuadric.N_PARAMS);
}
Matrix cameraMatrix;
double p11;
double p12;
double p13;
double p14;
double p21;
double p22;
double p23;
double p24;
double p31;
double p32;
double p33;
double p34;
int eqCounter = 0;
final int minReqEqs = getMinRequiredEquations();
for (final PinholeCamera camera : mCameras) {
// normalize cameras to increase accuracy
camera.normalize();
cameraMatrix = camera.getInternalMatrix();
p11 = cameraMatrix.getElementAt(0, 0);
p21 = cameraMatrix.getElementAt(1, 0);
p31 = cameraMatrix.getElementAt(2, 0);
p12 = cameraMatrix.getElementAt(0, 1);
p22 = cameraMatrix.getElementAt(1, 1);
p32 = cameraMatrix.getElementAt(2, 1);
p13 = cameraMatrix.getElementAt(0, 2);
p23 = cameraMatrix.getElementAt(1, 2);
p33 = cameraMatrix.getElementAt(2, 2);
p14 = cameraMatrix.getElementAt(0, 3);
p24 = cameraMatrix.getElementAt(1, 3);
p34 = cameraMatrix.getElementAt(2, 3);
// 1st row
fill2ndRowAnd1stRowEquation(p11, p21,
p12, p22,
p13, p23,
p14, p24, a, eqCounter);
eqCounter++;
// 2nd row
fill3rdRowAnd1stRowEquation(p11, p31,
p12, p32,
p13, p33,
p14, p34, a, eqCounter);
eqCounter++;
// 3rd row
fill3rdRowAnd2ndRowEquation(p21, p31,
p22, p32,
p23, p33,
p24, p34, a, eqCounter);
eqCounter++;
// 4th row
fill1stRowEqualTo2ndRowEquation(p11, p21,
p12, p22,
p13, p23,
p14, p24, a, eqCounter);
eqCounter++;
if (!isLMSESolutionAllowed() && eqCounter >= minReqEqs) {
break;
}
}
final SingularValueDecomposer decomposer = new SingularValueDecomposer(a);
enforceRank3IfNeeded(decomposer, result);
} catch (final AlgebraException | NumericalException e) {
throw new DualAbsoluteQuadricEstimatorException(e);
}
}
/**
* Estimates Dual Absolute Quadric (DAQ) assuming that skewness is zero,
* and principal point is located at origin of coordinates.
*
* @param result instance where resulting estimated Dual Absolute Quadric
* will be stored.
* @throws DualAbsoluteQuadricEstimatorException if an error occurs during
* estimation, usually because repeated cameras are provided, or cameras
* corresponding to critical motion sequences such as pure paraller
* translations are provided, where no additional data is really provided.
*/
private void estimateZeroSkewnessAndPrincipalPointAtOrigin(
final DualAbsoluteQuadric result)
throws DualAbsoluteQuadricEstimatorException {
try {
final int nCams = mCameras.size();
final Matrix a;
if (isLMSESolutionAllowed()) {
a = new Matrix(3 * nCams, DualAbsoluteQuadric.N_PARAMS);
} else {
a = new Matrix(9, DualAbsoluteQuadric.N_PARAMS);
}
Matrix cameraMatrix;
double p11;
double p12;
double p13;
double p14;
double p21;
double p22;
double p23;
double p24;
double p31;
double p32;
double p33;
double p34;
int eqCounter = 0;
final int minReqEqs = getMinRequiredEquations();
for (final PinholeCamera camera : mCameras) {
// normalize cameras to increase accuracy
camera.normalize();
cameraMatrix = camera.getInternalMatrix();
p11 = cameraMatrix.getElementAt(0, 0);
p21 = cameraMatrix.getElementAt(1, 0);
p31 = cameraMatrix.getElementAt(2, 0);
p12 = cameraMatrix.getElementAt(0, 1);
p22 = cameraMatrix.getElementAt(1, 1);
p32 = cameraMatrix.getElementAt(2, 1);
p13 = cameraMatrix.getElementAt(0, 2);
p23 = cameraMatrix.getElementAt(1, 2);
p33 = cameraMatrix.getElementAt(2, 2);
p14 = cameraMatrix.getElementAt(0, 3);
p24 = cameraMatrix.getElementAt(1, 3);
p34 = cameraMatrix.getElementAt(2, 3);
// 1st row
fill2ndRowAnd1stRowEquation(p11, p21,
p12, p22,
p13, p23,
p14, p24, a, eqCounter);
eqCounter++;
// 2nd row
fill3rdRowAnd1stRowEquation(p11, p31,
p12, p32,
p13, p33,
p14, p34, a, eqCounter);
eqCounter++;
// 3rd row
fill3rdRowAnd2ndRowEquation(p21, p31,
p22, p32,
p23, p33,
p24, p34, a, eqCounter);
eqCounter++;
if (!isLMSESolutionAllowed() && eqCounter >= minReqEqs) {
break;
}
}
final SingularValueDecomposer decomposer = new SingularValueDecomposer(a);
enforceRank3IfNeeded(decomposer, result);
} catch (final AlgebraException | NumericalException e) {
throw new DualAbsoluteQuadricEstimatorException(e);
}
}
/**
* Estimates Dual Absolute Quadric (DAQ) assuming that principal point is
* zero.
*
* @param result instance where resulting estimated Dual Absolute Quadric
* will be stored.
* @throws DualAbsoluteQuadricEstimatorException if an error occurs during
* estimation, usually because repeated cameras are provided, or
* cameras corresponding to critical motion sequences such as pure
* parallel translations are provided, where no additional data is
* really provided.
*/
private void estimatePrincipalPointAtOrigin(
final DualAbsoluteQuadric result)
throws DualAbsoluteQuadricEstimatorException {
try {
final int nCams = mCameras.size();
final Matrix a;
if (isLMSESolutionAllowed()) {
a = new Matrix(2 * nCams, DualAbsoluteQuadric.N_PARAMS);
} else {
a = new Matrix(mSingularityEnforced ? 8 : 10,
DualAbsoluteQuadric.N_PARAMS);
}
Matrix cameraMatrix;
double p11;
double p12;
double p13;
double p14;
double p21;
double p22;
double p23;
double p24;
double p31;
double p32;
double p33;
double p34;
int eqCounter = 0;
final int minReqEqs = getMinRequiredEquations();
for (final PinholeCamera camera : mCameras) {
// normalize cameras to increase accuracy
camera.normalize();
cameraMatrix = camera.getInternalMatrix();
p11 = cameraMatrix.getElementAt(0, 0);
p21 = cameraMatrix.getElementAt(1, 0);
p31 = cameraMatrix.getElementAt(2, 0);
p12 = cameraMatrix.getElementAt(0, 1);
p22 = cameraMatrix.getElementAt(1, 1);
p32 = cameraMatrix.getElementAt(2, 1);
p13 = cameraMatrix.getElementAt(0, 2);
p23 = cameraMatrix.getElementAt(1, 2);
p33 = cameraMatrix.getElementAt(2, 2);
p14 = cameraMatrix.getElementAt(0, 3);
p24 = cameraMatrix.getElementAt(1, 3);
p34 = cameraMatrix.getElementAt(2, 3);
// 1st row
fill3rdRowAnd1stRowEquation(p11, p31,
p12, p32,
p13, p33,
p14, p34, a, eqCounter);
eqCounter++;
// 2nd row
fill3rdRowAnd2ndRowEquation(p21, p31,
p22, p32,
p23, p33,
p24, p34, a, eqCounter);
eqCounter++;
if (!isLMSESolutionAllowed() && eqCounter >= minReqEqs) {
break;
}
}
final SingularValueDecomposer decomposer = new SingularValueDecomposer(a);
enforceRank3IfNeeded(decomposer, result);
} catch (final AlgebraException | NumericalException e) {
throw new DualAbsoluteQuadricEstimatorException(e);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy