All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.irurueta.ar.epipolar.refiners.HomogeneousRightEpipoleRefiner Maven / Gradle / Ivy

There is a newer version: 1.3.0
Show newest version
/*
 * Copyright (C) 2017 Alberto Irurueta Carro ([email protected])
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.irurueta.ar.epipolar.refiners;

import com.irurueta.algebra.Matrix;
import com.irurueta.ar.epipolar.FundamentalMatrix;
import com.irurueta.ar.epipolar.InvalidFundamentalMatrixException;
import com.irurueta.geometry.CoordinatesType;
import com.irurueta.geometry.HomogeneousPoint2D;
import com.irurueta.geometry.Point2D;
import com.irurueta.geometry.Transformation2D;
import com.irurueta.geometry.estimators.LockedException;
import com.irurueta.geometry.estimators.NotReadyException;
import com.irurueta.geometry.refiners.RefinerException;
import com.irurueta.numerical.EvaluationException;
import com.irurueta.numerical.GradientEstimator;
import com.irurueta.numerical.MultiDimensionFunctionEvaluatorListener;
import com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFitter;
import com.irurueta.numerical.fitting.LevenbergMarquardtMultiDimensionFunctionEvaluator;
import com.irurueta.numerical.robust.InliersData;

import java.util.BitSet;
import java.util.List;

/**
 * Refines the epipole of a fundamental matrix formed by an initial epipole
 * estimation and an estimated homography.
 * Any fundamental matrix can be expressed as F = [e']x*H, where
 * e' is the epipole on the right view, []x is the skew matrix, and H is a non
 * degenerate homography.
 * This class refines an initial epipole so that residuals from provided point
 * correspondences generating fundamental matrix F are reduced.
 * This class is especially useful in cases where geometry of the scene is
 * degenerate (e.g. planar scene) and provided point correspondences would
 * generate an inaccurate fundamental matrix.
 * This implementation uses Levenberg-Marquardt algorithm for a fast cost
 * optimization and uses homogeneous points for epipole refinement.
 */
public class HomogeneousRightEpipoleRefiner extends RightEpipoleRefiner {

    /**
     * Maximum allowed number of refinement iterations.
     */
    public static final int MAX_ITERS = 10;

    /**
     * Constructor.
     */
    public HomogeneousRightEpipoleRefiner() {
    }

    /**
     * Constructor.
     *
     * @param initialEpipoleEstimation    initial right epipole estimation to be
     *                                    set and refined.
     * @param keepCovariance              true if covariance of estimation must be kept after
     *                                    refinement, false otherwise.
     * @param inliers                     set indicating which of the provided matches are inliers.
     * @param residuals                   residuals for matched samples.
     * @param numInliers                  number of inliers on initial estimation.
     * @param samples1                    1st set of paired samples.
     * @param samples2                    2nd set of paired samples.
     * @param refinementStandardDeviation standard deviation used for
     *                                    Levenberg-Marquardt fitting.
     * @param homography                  homography relating samples in two views, which is
     *                                    used to generate a fundamental matrix and its corresponding epipolar
     *                                    geometry.
     */
    public HomogeneousRightEpipoleRefiner(
            final Point2D initialEpipoleEstimation,
            final boolean keepCovariance,
            final BitSet inliers,
            final double[] residuals,
            final int numInliers,
            final List samples1,
            final List samples2,
            final double refinementStandardDeviation,
            final Transformation2D homography) {
        super(initialEpipoleEstimation, keepCovariance, inliers, residuals,
                numInliers, samples1, samples2, refinementStandardDeviation,
                homography);
    }

    /**
     * Constructor.
     *
     * @param initialEpipoleEstimation    initial right epipole estimation to be
     *                                    set and refined.
     * @param keepCovariance              true if covariance of estimation must be kept after
     *                                    refinement, false otherwise.
     * @param inliersData                 inlier data, typically obtained from a robust
     *                                    estimator.
     * @param samples1                    1st set of paired samples.
     * @param samples2                    2nd set of paired samples.
     * @param refinementStandardDeviation standard deviation used for
     *                                    Levenberg-Marquardt fitting.
     * @param homography                  homography relating samples in two views, which is used
     *                                    to generate a fundamental matrix and its corresponding epipolar geometry.
     */
    public HomogeneousRightEpipoleRefiner(
            final Point2D initialEpipoleEstimation,
            final boolean keepCovariance,
            final InliersData inliersData,
            final List samples1,
            final List samples2,
            final double refinementStandardDeviation,
            final Transformation2D homography) {
        super(initialEpipoleEstimation, keepCovariance, inliersData, samples1,
                samples2, refinementStandardDeviation, homography);
    }

    /**
     * Refines provided initial right epipole estimation.
     * This method always sets a value into provided result instance regardless
     * of the fact that error has actually improved in LMSE terms or not.
     *
     * @param result instance where refined estimation will be stored.
     * @return true if result improves (decreases) in LMSE terms respect to
     * initial estimation, false if no improvement has been achieved.
     * @throws NotReadyException if not enough input data has been provided.
     * @throws LockedException   if estimator is locked because refinement is
     *                           already in progress.
     * @throws RefinerException  if refinement fails for some reason (e.g. unable
     *                           to converge to a result).
     */
    @SuppressWarnings("DuplicatedCode")
    @Override
    public boolean refine(final Point2D result) throws NotReadyException,
            LockedException, RefinerException {
        if (isLocked()) {
            throw new LockedException();
        }
        if (!isReady()) {
            throw new NotReadyException();
        }

        mLocked = true;

        if (mListener != null) {
            mListener.onRefineStart(this, mInitialEstimation);
        }

        try {
            final HomogeneousPoint2D epipole = new HomogeneousPoint2D(
                    mInitialEstimation);
            boolean errorDecreased = false;
            boolean iterErrorDecreased;
            int numIter = 0;
            do {
                final FundamentalMatrix fundamentalMatrix = new FundamentalMatrix();
                computeFundamentalMatrix(mHomography, epipole,
                        fundamentalMatrix);
                final double initialTotalResidual = totalResidual(fundamentalMatrix);
                final double[] initParams = epipole.asArray();

                // output values to be fitted/optimized will contain residuals
                final double[] y = new double[mNumInliers];
                // input values will contain 2 points to compute residuals
                final int nDims =
                        2 * Point2D.POINT2D_HOMOGENEOUS_COORDINATES_LENGTH;
                final Matrix x = new Matrix(mNumInliers, nDims);
                final int nSamples = mInliers.length();
                int pos = 0;
                Point2D leftPoint;
                Point2D rightPoint;
                for (int i = 0; i < nSamples; i++) {
                    if (mInliers.get(i)) {
                        // sample is inlier
                        leftPoint = mSamples1.get(i);
                        rightPoint = mSamples2.get(i);
                        leftPoint.normalize();
                        rightPoint.normalize();
                        x.setElementAt(pos, 0, leftPoint.getHomX());
                        x.setElementAt(pos, 1, leftPoint.getHomY());
                        x.setElementAt(pos, 2, leftPoint.getHomW());
                        x.setElementAt(pos, 3, rightPoint.getHomX());
                        x.setElementAt(pos, 4, rightPoint.getHomY());
                        x.setElementAt(pos, 5, rightPoint.getHomW());

                        y[pos] = mResiduals[i];
                        pos++;
                    }
                }

                final LevenbergMarquardtMultiDimensionFunctionEvaluator evaluator =
                        new LevenbergMarquardtMultiDimensionFunctionEvaluator() {

                            private final Point2D mLeftPoint = Point2D.create(
                                    CoordinatesType.HOMOGENEOUS_COORDINATES);

                            private final Point2D mRightPoint = Point2D.create(
                                    CoordinatesType.HOMOGENEOUS_COORDINATES);

                            private final HomogeneousPoint2D mEpipole =
                                    new HomogeneousPoint2D();

                            private final FundamentalMatrix mFundMatrix =
                                    new FundamentalMatrix();

                            private final GradientEstimator mGradientEstimator =
                                    new GradientEstimator(
                                            new MultiDimensionFunctionEvaluatorListener() {
                                                @Override
                                                public double evaluate(final double[] point)
                                                        throws EvaluationException {
                                                    try {
                                                        mEpipole.setCoordinates(point);
                                                        computeFundamentalMatrix(mHomography, mEpipole,
                                                                mFundMatrix);
                                                        return residual(mFundMatrix, mLeftPoint,
                                                                mRightPoint);
                                                    } catch (final InvalidFundamentalMatrixException e) {
                                                        throw new EvaluationException(e);
                                                    }
                                                }
                                            });

                            @Override
                            public int getNumberOfDimensions() {
                                return nDims;
                            }

                            @Override
                            public double[] createInitialParametersArray() {
                                return initParams;
                            }

                            @Override
                            public double evaluate(
                                    final int i, final double[] point,
                                    final double[] params, final double[] derivatives)
                                    throws EvaluationException {
                                try {
                                    mLeftPoint.setHomogeneousCoordinates(point[0], point[1],
                                            point[2]);
                                    mRightPoint.setHomogeneousCoordinates(point[3],
                                            point[4], point[5]);

                                    mEpipole.setCoordinates(params);
                                    computeFundamentalMatrix(mHomography, mEpipole,
                                            mFundMatrix);

                                    final double y = residual(mFundMatrix, mLeftPoint,
                                            mRightPoint);
                                    mGradientEstimator.gradient(params, derivatives);

                                    return y;
                                } catch (final InvalidFundamentalMatrixException e) {
                                    throw new EvaluationException(e);
                                }
                            }
                        };

                final LevenbergMarquardtMultiDimensionFitter fitter =
                        new LevenbergMarquardtMultiDimensionFitter(evaluator, x,
                                y, getRefinementStandardDeviation());

                fitter.fit();

                // obtain estimated params
                final double[] params = fitter.getA();

                // update initial epipole for next iteration
                epipole.setHomogeneousCoordinates(params[0], params[1],
                        params[2]);

                computeFundamentalMatrix(mHomography, epipole,
                        fundamentalMatrix);

                final double finalTotalResidual = totalResidual(fundamentalMatrix);
                iterErrorDecreased = finalTotalResidual < initialTotalResidual;
                if (iterErrorDecreased || !errorDecreased) {
                    errorDecreased = true;
                    // update final result
                    result.setHomogeneousCoordinates(params[0], params[1],
                            params[2]);

                    if (mKeepCovariance) {
                        // keep covariance
                        mCovariance = fitter.getCovar();
                    }
                }
                numIter++;
            } while (iterErrorDecreased && numIter < MAX_ITERS);

            if (mListener != null) {
                mListener.onRefineEnd(this, mInitialEstimation, result,
                        true);
            }

            return true;

        } catch (final Exception e) {
            throw new RefinerException(e);
        } finally {
            mLocked = false;
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy