All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.irurueta.ar.sfm.BaseAbsoluteOrientationSlamTwoViewsSparseReconstructor Maven / Gradle / Ivy

There is a newer version: 1.3.0
Show newest version
/*
 * Copyright (C) 2017 Alberto Irurueta Carro ([email protected])
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.irurueta.ar.sfm;

import com.irurueta.ar.slam.AbsoluteOrientationBaseSlamEstimator;
import com.irurueta.ar.slam.BaseCalibrationData;
import com.irurueta.geometry.MetricTransformation3D;
import com.irurueta.geometry.PinholeCamera;
import com.irurueta.geometry.Point3D;
import com.irurueta.geometry.Rotation3D;

import java.util.ArrayList;
import java.util.List;

/**
 * Base class in charge of estimating cameras and 3D reconstructed points from
 * sparse image point correspondences in two views and also in charge of
 * estimating overall scene scale and absolute orientation by means of SLAM
 * (Simultaneous Location And Mapping) using data obtained from sensors like
 * accelerometers or gyroscopes.
 * NOTE: absolute orientation slam estimators are not very accurate during
 * estimation of the orientation state, for that reason we take into account
 * the initial orientation.
 *
 * @param  type of calibration data.
 * @param  type of configuration.
 * @param  type of re-constructor.
 * @param  type of listener.
 * @param  type of SLAM estimator.
 */
public abstract class BaseAbsoluteOrientationSlamTwoViewsSparseReconstructor<
        D extends BaseCalibrationData,
        C extends BaseSlamTwoViewsSparseReconstructorConfiguration,
        R extends BaseSlamTwoViewsSparseReconstructor,
        L extends BaseSlamTwoViewsSparseReconstructorListener,
        S extends AbsoluteOrientationBaseSlamEstimator> extends
        BaseSlamTwoViewsSparseReconstructor {

    /**
     * First sample of orientation received.
     */
    protected Rotation3D mFirstOrientation;

    /**
     * Constructor.
     *
     * @param configuration configuration for this re-constructor.
     * @param listener      listener in charge of handling events.
     * @throws NullPointerException if listener or configuration is not
     *                              provided.
     */
    protected BaseAbsoluteOrientationSlamTwoViewsSparseReconstructor(
            final C configuration, final L listener) {
        super(configuration, listener);
    }

    /**
     * Provides a new orientation sample to update SLAM estimator.
     * If re-constructor is not running, calling this method has no effect.
     *
     * @param timestamp   timestamp of accelerometer sample since epoch time and
     *                    expressed in nanoseconds.
     * @param orientation new orientation.
     */
    public void updateOrientationSample(final long timestamp,
                                        final Rotation3D orientation) {
        if (mSlamEstimator != null) {
            mSlamEstimator.updateOrientationSample(timestamp, orientation);
        }
        if (mFirstOrientation == null) {
            //make a copy of orientation
            mFirstOrientation = orientation.toQuaternion();
        }
    }

    /**
     * Updates scene scale and orientation using SLAM data.
     *
     * @return true if scale was successfully updated, false otherwise.
     */
    @SuppressWarnings("DuplicatedCode")
    protected boolean updateScaleAndOrientation() {

        // obtain baseline (camera separation from slam estimator data
        final double posX = mSlamEstimator.getStatePositionX();
        final double posY = mSlamEstimator.getStatePositionY();
        final double posZ = mSlamEstimator.getStatePositionZ();

        // to estimate baseline, we assume that first camera is placed at
        // world origin
        final double baseline = Math.sqrt(posX * posX + posY * posY + posZ * posZ);

        try {
            final PinholeCamera camera1 = mEstimatedCamera1.getCamera();
            final PinholeCamera camera2 = mEstimatedCamera2.getCamera();

            camera1.decompose();
            camera2.decompose();

            final Point3D center1 = camera1.getCameraCenter();
            final Point3D center2 = camera2.getCameraCenter();

            // R1' = R1*Rdiff
            // Rdiff = R1^T*R1'

            // where R1' is the desired orientation (obtained by sampling a
            // sensor)
            // and R1 is always the identity for the 1st camera.
            // Hence R1' = Rdiff

            // t1' is the desired translation which is zero for the 1st
            // camera.

            // We want: P1' = K*[R1' t1'] = K*[R1' 0]
            // And we have P1 = K[I 0]

            // We need a transformation T so that:
            // P1' = P1*T^-1 = K[I 0][R1' 0]
            //                      [0   1]

            // Hence: T^-1 = [R1' 0]
            //              [0   1]

            // or T = [R1'^T 0]
            //       [0     1]

            // because we are also applying a transformation of scale s,
            // the combination of both transformations is
            // T = [s*R1'^T 0]
            //     [0       1]

            final Rotation3D r = mFirstOrientation.inverseRotationAndReturnNew();

            final double estimatedBaseline = center1.distanceTo(center2);

            final double scale = baseline / estimatedBaseline;

            final MetricTransformation3D scaleAndOrientationTransformation =
                    new MetricTransformation3D(scale);
            scaleAndOrientationTransformation.setRotation(r);

            // update scale of cameras
            scaleAndOrientationTransformation.transform(camera1);
            scaleAndOrientationTransformation.transform(camera2);

            mEstimatedCamera1.setCamera(camera1);
            mEstimatedCamera2.setCamera(camera2);

            // update scale of reconstructed points
            final int numPoints = mReconstructedPoints.size();
            final List reconstructedPoints3D = new ArrayList<>();
            for (final ReconstructedPoint3D reconstructedPoint : mReconstructedPoints) {
                reconstructedPoints3D.add(reconstructedPoint.
                        getPoint());
            }

            scaleAndOrientationTransformation.transformAndOverwritePoints(
                    reconstructedPoints3D);

            // set scaled points into result
            for (int i = 0; i < numPoints; i++) {
                mReconstructedPoints.get(i).setPoint(
                        reconstructedPoints3D.get(i));
            }

            return true;
        } catch (final Exception e) {
            mFailed = true;
            //noinspection unchecked
            mListener.onFail((R) this);

            return false;
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy