
com.irurueta.ar.sfm.BaseSlamPairedViewsSparseReconstructor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of irurueta-ar Show documentation
Show all versions of irurueta-ar Show documentation
Augmented Reality and 3D reconstruction library
/*
* Copyright (C) 2017 Alberto Irurueta Carro ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.irurueta.ar.sfm;
import com.irurueta.algebra.AlgebraException;
import com.irurueta.ar.slam.BaseCalibrationData;
import com.irurueta.ar.slam.BaseSlamEstimator;
import com.irurueta.geometry.GeometryException;
import com.irurueta.geometry.InhomogeneousPoint3D;
import com.irurueta.geometry.MetricTransformation3D;
import com.irurueta.geometry.PinholeCamera;
import com.irurueta.geometry.PinholeCameraIntrinsicParameters;
import com.irurueta.geometry.Point3D;
import com.irurueta.geometry.Quaternion;
import com.irurueta.geometry.Rotation3D;
import java.util.ArrayList;
@SuppressWarnings("DuplicatedCode")
public abstract class BaseSlamPairedViewsSparseReconstructor<
D extends BaseCalibrationData,
C extends BaseSlamPairedViewsSparseReconstructorConfiguration,
R extends BaseSlamPairedViewsSparseReconstructor,
L extends BaseSlamPairedViewsSparseReconstructorListener,
S extends BaseSlamEstimator> extends BasePairedViewsSparseReconstructor {
/**
* Slam estimator to estimate position, speed, orientation using
* accelerometer and gyroscope data.
*/
protected S mSlamEstimator;
/**
* Position estimated by means of SLAM. It is reused each time it is notified.
*/
private final InhomogeneousPoint3D mSlamPosition = new InhomogeneousPoint3D();
/**
* Inverse euclidean camera rotation. This is reused for memory efficiency.
*/
private Rotation3D mInvEuclideanCameraRotation;
/**
* Camera estimated by means of SLAM. It is reused each time it is notified.
*/
private final PinholeCamera mSlamCamera = new PinholeCamera();
/**
* Camera rotation estimated by means of SLAM. It is reused each time it is notified.
*/
private final Quaternion mSlamRotation = new Quaternion();
/**
* Last SLAM timestamp.
*/
private long mLastTimestamp = -1;
/**
* Last view pair SLAM timestamp.
*/
private long mLastViewPairTimestamp = -1;
/**
* Constructor.
*
* @param configuration configuration for this re-constructor.
* @param listener listener in charge of handling events.
* @throws NullPointerException if listener or configuration is not
* provided.
*/
protected BaseSlamPairedViewsSparseReconstructor(final C configuration, final L listener) {
super(configuration, listener);
}
/**
* Provides a new accelerometer sample to update SLAM estimation.
* This method must be called whenever the accelerometer sensor receives new
* data.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of accelerometer sample since epoch time and
* expressed in nanoseconds.
* @param accelerationX linear acceleration along x-axis expressed in meters
* per squared second (m/s^2).
* @param accelerationY linear acceleration along y-axis expressed in meters
* per squared second (m/s^2).
* @param accelerationZ linear acceleration along z-axis expressed in meters
* per squared second (m/s^2).
*/
public void updateAccelerometerSample(final long timestamp, final float accelerationX,
final float accelerationY, final float accelerationZ) {
if (mLastViewPairTimestamp < 0) {
mLastViewPairTimestamp = timestamp;
}
if (mSlamEstimator != null) {
mSlamEstimator.updateAccelerometerSample(timestamp - mLastViewPairTimestamp,
accelerationX, accelerationY, accelerationZ);
}
mLastTimestamp = timestamp;
}
/**
* Provides a new accelerometer sample to update SLAM estimation.
* This method must be called whenever the accelerometer sensor receives new
* data.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of accelerometer sample since epoch time and
* expressed in nanoseconds.
* @param data array containing x,y,z components of linear acceleration
* expressed in meters per squared second (m/s^2).
* @throws IllegalArgumentException if provided array does not have length
* 3.
*/
public void updateAccelerometerSample(final long timestamp, final float[] data) {
if (mLastViewPairTimestamp < 0) {
mLastViewPairTimestamp = timestamp;
}
if (mSlamEstimator != null) {
mSlamEstimator.updateAccelerometerSample(timestamp - mLastViewPairTimestamp,
data);
}
mLastTimestamp = timestamp;
}
/**
* Provides a new gyroscope sample to update SLAM estimation.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of gyroscope sample since epoch time and
* expressed in nanoseconds.
* @param angularSpeedX angular speed of rotation along x-axis expressed in
* radians per second (rad/s).
* @param angularSpeedY angular speed of rotation along y-axis expressed in
* radians per second (rad/s).
* @param angularSpeedZ angular speed of rotation along z-axis expressed in
* radians per second (rad/s).
*/
public void updateGyroscopeSample(final long timestamp, final float angularSpeedX,
final float angularSpeedY, final float angularSpeedZ) {
if (mLastViewPairTimestamp < 0) {
mLastViewPairTimestamp = timestamp;
}
if (mSlamEstimator != null) {
mSlamEstimator.updateGyroscopeSample(timestamp - mLastViewPairTimestamp,
angularSpeedX, angularSpeedY, angularSpeedZ);
}
mLastTimestamp = timestamp;
}
/**
* Provides a new gyroscope sample to update SLAM estimation.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of gyroscope sample since epoch time and
* expressed in nanoseconds.
* @param data angular speed of rotation along x,y,z axes expressed in
* radians per second (rad/s).
* @throws IllegalArgumentException if provided array does not have length
* 3.
*/
public void updateGyroscopeSample(final long timestamp, final float[] data) {
if (mLastViewPairTimestamp < 0) {
mLastViewPairTimestamp = timestamp;
}
if (mSlamEstimator != null) {
mSlamEstimator.updateGyroscopeSample(timestamp - mLastViewPairTimestamp,
data);
}
mLastTimestamp = timestamp;
}
/**
* Resets this instance so that a reconstruction can be started from the beginning without cancelling current one.
*/
@Override
public void reset() {
super.reset();
mLastTimestamp = mLastViewPairTimestamp = -1;
}
/**
* Indicates whether implementations of a re-constructor uses absolute orientation or
* not.
*
* @return true if absolute orientation is used, false, otherwise.
*/
@Override
protected boolean hasAbsoluteOrientation() {
return false;
}
/**
* Configures calibration data on SLAM estimator if available.
*/
protected void setUpCalibrationData() {
final D calibrationData = mConfiguration.getCalibrationData();
if (calibrationData != null) {
mSlamEstimator.setCalibrationData(calibrationData);
}
}
/**
* Configures listener of SLAM estimator
*/
protected void setUpSlamEstimatorListener() {
mSlamEstimator.setListener(new BaseSlamEstimator.BaseSlamEstimatorListener() {
@Override
public void onFullSampleReceived(final BaseSlamEstimator estimator) {
// not used
}
@Override
public void onFullSampleProcessed(final BaseSlamEstimator estimator) {
notifySlamStateAndCamera();
}
@Override
public void onCorrectWithPositionMeasure(final BaseSlamEstimator estimator) {
// not used
}
@Override
public void onCorrectedWithPositionMeasure(final BaseSlamEstimator estimator) {
notifySlamStateAndCamera();
}
private void notifySlamStateAndCamera() {
notifySlamStateIfNeeded();
notifySlamCameraIfNeeded();
}
});
}
/**
* Transforms metric cameras on current pair of views so that they are referred to
* last kept location and rotation and upgrades cameras from metric stratum to
* euclidean stratum.
*
* @param isInitialPairOfViews true if initial pair of views is being processed, false otherwise.
* @param hasAbsoluteOrientation true if absolute orientation is required, false otherwise.
* @return true if cameras were successfully transformed.
*/
@Override
protected boolean transformPairOfCamerasAndPoints(final boolean isInitialPairOfViews,
final boolean hasAbsoluteOrientation) {
final PinholeCamera previousMetricCamera = mPreviousMetricEstimatedCamera.getCamera();
final PinholeCamera currentMetricCamera = mCurrentMetricEstimatedCamera.getCamera();
if (previousMetricCamera == null || currentMetricCamera == null) {
return false;
}
mCurrentScale = estimateCurrentScale();
final double sqrScale = mCurrentScale * mCurrentScale;
mReferenceEuclideanTransformation = new MetricTransformation3D(mCurrentScale);
if (hasAbsoluteOrientation) {
mInvEuclideanCameraRotation = mLastEuclideanCameraRotation.inverseRotationAndReturnNew();
if (isInitialPairOfViews) {
mReferenceEuclideanTransformation.setRotation(mInvEuclideanCameraRotation);
}
}
if (!isInitialPairOfViews) {
// additional pairs also need to translate and rotate
if (mInvEuclideanCameraRotation == null) {
mInvEuclideanCameraRotation = mLastEuclideanCameraRotation.inverseRotationAndReturnNew();
} else {
mLastEuclideanCameraRotation.inverseRotation(mInvEuclideanCameraRotation);
}
mReferenceEuclideanTransformation.setRotation(mInvEuclideanCameraRotation);
mReferenceEuclideanTransformation.setTranslation(mLastEuclideanCameraCenter);
}
try {
// transform cameras
final PinholeCamera previousEuclideanCamera = mReferenceEuclideanTransformation.
transformAndReturnNew(previousMetricCamera);
final PinholeCamera currentEuclideanCamera = mReferenceEuclideanTransformation.
transformAndReturnNew(currentMetricCamera);
mPreviousEuclideanEstimatedCamera = new EstimatedCamera();
mPreviousEuclideanEstimatedCamera.setCamera(previousEuclideanCamera);
mPreviousEuclideanEstimatedCamera.setViewId(
mPreviousMetricEstimatedCamera.getViewId());
mPreviousEuclideanEstimatedCamera.setQualityScore(
mPreviousMetricEstimatedCamera.getQualityScore());
if (mPreviousMetricEstimatedCamera.getCovariance() != null) {
mPreviousEuclideanEstimatedCamera.setCovariance(
mPreviousMetricEstimatedCamera.getCovariance().
multiplyByScalarAndReturnNew(sqrScale));
}
mCurrentEuclideanEstimatedCamera = new EstimatedCamera();
mCurrentEuclideanEstimatedCamera.setCamera(currentEuclideanCamera);
mCurrentEuclideanEstimatedCamera.setViewId(
mCurrentMetricEstimatedCamera.getViewId());
mCurrentEuclideanEstimatedCamera.setQualityScore(
mCurrentMetricEstimatedCamera.getQualityScore());
if (mCurrentMetricEstimatedCamera.getCovariance() != null) {
mCurrentEuclideanEstimatedCamera.setCovariance(
mCurrentMetricEstimatedCamera.getCovariance().
multiplyByScalarAndReturnNew(sqrScale));
}
// transform points
mEuclideanReconstructedPoints = new ArrayList<>();
ReconstructedPoint3D euclideanReconstructedPoint;
Point3D metricPoint;
Point3D euclideanPoint;
for (final ReconstructedPoint3D metricReconstructedPoint : mMetricReconstructedPoints) {
metricPoint = metricReconstructedPoint.getPoint();
euclideanPoint = mReferenceEuclideanTransformation.transformAndReturnNew(
metricPoint);
euclideanReconstructedPoint = new ReconstructedPoint3D();
euclideanReconstructedPoint.setPoint(euclideanPoint);
euclideanReconstructedPoint.setInlier(metricReconstructedPoint.isInlier());
euclideanReconstructedPoint.setId(metricReconstructedPoint.getId());
euclideanReconstructedPoint.setColorData(
metricReconstructedPoint.getColorData());
if (metricReconstructedPoint.getCovariance() != null) {
euclideanReconstructedPoint.setCovariance(
metricReconstructedPoint.getCovariance().
multiplyByScalarAndReturnNew(sqrScale));
}
euclideanReconstructedPoint.setQualityScore(
metricReconstructedPoint.getQualityScore());
mEuclideanReconstructedPoints.add(euclideanReconstructedPoint);
}
} catch (final AlgebraException e) {
return false;
}
return super.transformPairOfCamerasAndPoints(isInitialPairOfViews, hasAbsoluteOrientation);
}
/**
* Estimates current scale using SLAM data.
*
* @return estimated scale.
*/
private double estimateCurrentScale() {
try {
final PinholeCamera metricCamera1 = mPreviousMetricEstimatedCamera.getCamera();
final PinholeCamera metricCamera2 = mCurrentMetricEstimatedCamera.getCamera();
if (!metricCamera1.isCameraCenterAvailable()) {
metricCamera1.decompose(false, true);
}
if (!metricCamera2.isCameraCenterAvailable()) {
metricCamera2.decompose(false, true);
}
final Point3D metricCenter1 = metricCamera1.getCameraCenter();
final Point3D metricCenter2 = metricCamera2.getCameraCenter();
// obtain baseline (camera separation from slam estimator data)
final double slamPosX = mSlamEstimator.getStatePositionX();
final double slamPosY = mSlamEstimator.getStatePositionY();
final double slamPosZ = mSlamEstimator.getStatePositionZ();
mSlamPosition.setInhomogeneousCoordinates(slamPosX, slamPosY, slamPosZ);
// we assume that euclidean center of 1st camera is at origin because by the time
// this method is called, metric cameras have not yet been orientation and position
// transformed
final double euclideanBaseline = Math.sqrt(
slamPosX * slamPosX +
slamPosY * slamPosY +
slamPosZ * slamPosZ);
final double metricBaseline = metricCenter1.distanceTo(metricCenter2);
// because when we call reset in SLAM estimator, timestamp is lost, we keep
// track of last timestamp to be subtracted on subsequent update calls
mLastViewPairTimestamp = mLastTimestamp;
// reset linear velocity and orientation and keep other slam state parameters
mSlamEstimator.resetPositionAndVelocity();
return euclideanBaseline / metricBaseline;
} catch (final Exception e) {
mFailed = true;
//noinspection unchecked
mListener.onFail((R) this);
return DEFAULT_SCALE;
}
}
/**
* Notifies SLAM state if notification is enabled at configuration time.
*/
private void notifySlamStateIfNeeded() {
if (!mConfiguration.isNotifyAvailableSlamDataEnabled()) {
return;
}
final double lastPosX = mLastEuclideanCameraCenter != null ?
mLastEuclideanCameraCenter.getInhomX() : 0.0;
final double lastPosY = mLastEuclideanCameraCenter != null ?
mLastEuclideanCameraCenter.getInhomY() : 0.0;
final double lastPosZ = mLastEuclideanCameraCenter != null ?
mLastEuclideanCameraCenter.getInhomZ() : 0.0;
final double positionX = lastPosX + mSlamEstimator.getStatePositionX();
final double positionY = lastPosY + mSlamEstimator.getStatePositionY();
final double positionZ = lastPosZ + mSlamEstimator.getStatePositionZ();
final double velocityX = mSlamEstimator.getStateVelocityX();
final double velocityY = mSlamEstimator.getStateVelocityY();
final double velocityZ = mSlamEstimator.getStateVelocityZ();
final double accelerationX = mSlamEstimator.getStateAccelerationX();
final double accelerationY = mSlamEstimator.getStateAccelerationY();
final double accelerationZ = mSlamEstimator.getStateAccelerationZ();
final double quaternionA = mSlamEstimator.getStateQuaternionA();
final double quaternionB = mSlamEstimator.getStateQuaternionB();
final double quaternionC = mSlamEstimator.getStateQuaternionC();
final double quaternionD = mSlamEstimator.getStateQuaternionD();
final double angularSpeedX = mSlamEstimator.getStateAngularSpeedX();
final double angularSpeedY = mSlamEstimator.getStateAngularSpeedY();
final double angularSpeedZ = mSlamEstimator.getStateAngularSpeedZ();
//noinspection unchecked
mListener.onSlamDataAvailable((R) this, positionX, positionY, positionZ,
velocityX, velocityY, velocityZ,
accelerationX, accelerationY, accelerationZ,
quaternionA, quaternionB, quaternionC, quaternionD,
angularSpeedX, angularSpeedY, angularSpeedZ, mSlamEstimator.getStateCovariance());
}
/**
* Notifies estimated camera by means of SLAM if notification is enabled at
* configuration time and intrinsics are already available.
*/
private void notifySlamCameraIfNeeded() {
if (!mConfiguration.isNotifyEstimatedSlamCameraEnabled()) {
return;
}
// try with current camera
PinholeCamera camera = mCurrentEuclideanEstimatedCamera != null ?
mCurrentEuclideanEstimatedCamera.getCamera() : null;
if (camera == null) {
// if not available try with previous camera
camera = mPreviousEuclideanEstimatedCamera != null ?
mPreviousEuclideanEstimatedCamera.getCamera() : null;
}
try {
PinholeCameraIntrinsicParameters intrinsicParameters = null;
if (camera != null) {
if (!camera.areIntrinsicParametersAvailable()) {
// decompose camera to obtain intrinsic parameters
camera.decompose();
}
intrinsicParameters = camera.getIntrinsicParameters();
} else if (mConfiguration.areIntrinsicParametersKnown()) {
//noinspection unchecked
intrinsicParameters = mListener.onIntrinsicParametersRequested((R) this, mCurrentViewId);
}
if (intrinsicParameters == null) {
return;
}
final double lastPosX = mLastEuclideanCameraCenter != null ?
mLastEuclideanCameraCenter.getInhomX() : 0.0;
final double lastPosY = mLastEuclideanCameraCenter != null ?
mLastEuclideanCameraCenter.getInhomY() : 0.0;
final double lastPosZ = mLastEuclideanCameraCenter != null ?
mLastEuclideanCameraCenter.getInhomZ() : 0.0;
final double positionX = lastPosX + mSlamEstimator.getStatePositionX();
final double positionY = lastPosY + mSlamEstimator.getStatePositionY();
final double positionZ = lastPosZ + mSlamEstimator.getStatePositionZ();
mSlamPosition.setInhomogeneousCoordinates(positionX, positionY, positionZ);
final double quaternionA = mSlamEstimator.getStateQuaternionA();
final double quaternionB = mSlamEstimator.getStateQuaternionB();
final double quaternionC = mSlamEstimator.getStateQuaternionC();
final double quaternionD = mSlamEstimator.getStateQuaternionD();
mSlamRotation.setA(quaternionA);
mSlamRotation.setB(quaternionB);
mSlamRotation.setC(quaternionC);
mSlamRotation.setD(quaternionD);
mSlamCamera.setIntrinsicAndExtrinsicParameters(intrinsicParameters, mSlamRotation,
mSlamPosition);
//noinspection unchecked
mListener.onSlamCameraEstimated((R) this, mSlamCamera);
} catch (final GeometryException ignore) {
// do nothing
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy