
com.irurueta.ar.sfm.BaseSlamSparseReconstructor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of irurueta-ar Show documentation
Show all versions of irurueta-ar Show documentation
Augmented Reality and 3D reconstruction library
/*
* Copyright (C) 2017 Alberto Irurueta Carro ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.irurueta.ar.sfm;
import com.irurueta.ar.slam.BaseCalibrationData;
import com.irurueta.ar.slam.BaseSlamEstimator;
import com.irurueta.geometry.GeometryException;
import com.irurueta.geometry.InhomogeneousPoint3D;
import com.irurueta.geometry.MetricTransformation3D;
import com.irurueta.geometry.PinholeCamera;
import com.irurueta.geometry.PinholeCameraIntrinsicParameters;
import com.irurueta.geometry.Point3D;
import com.irurueta.geometry.Quaternion;
import java.util.ArrayList;
import java.util.List;
/**
* Base class in charge of estimating cameras and 3D reconstructed points from sparse
* image point correspondences in multiple views and also in charge of estimating overall
* scene scale by means of SLAM (Simultaneous Location And Mapping) using data obtained
* from sensors like accelerometers or gyroscopes.
*
* @param type defining calibration data.
* @param type of configuration.
* @param type of re-constructor.
* @param type of listener.
* @param type of SLAM estimator.
*/
@SuppressWarnings("DuplicatedCode")
public abstract class BaseSlamSparseReconstructor<
D extends BaseCalibrationData,
C extends BaseSlamSparseReconstructorConfiguration,
R extends BaseSlamSparseReconstructor,
L extends BaseSlamSparseReconstructorListener,
S extends BaseSlamEstimator> extends BaseSparseReconstructor {
/**
* Slam estimator to estimate position, speed, orientation using
* accelerometer and gyroscope data.
*/
protected S mSlamEstimator;
/**
* Position estimated by means of SLAM. It is reused each time it is notified.
*/
protected final InhomogeneousPoint3D mSlamPosition = new InhomogeneousPoint3D();
/**
* Camera estimated by means of SLAM. It is reused each time it is notified.
*/
private final PinholeCamera mSlamCamera = new PinholeCamera();
/**
* Camera rotation estimated by means of SLAM. It is reused each time it is notified.
*/
private final Quaternion mSlamRotation = new Quaternion();
/**
* Constructor.
*
* @param configuration configuration for this re-constructor.
* @param listener listener in charge of handling events.
* @throws NullPointerException if listener or configuration is not
* provided.
*/
protected BaseSlamSparseReconstructor(final C configuration,
final L listener) {
super(configuration, listener);
}
/**
* Provides a new accelerometer sample to update SLAM estimation.
* This method must be called whenever the accelerometer sensor receives new
* data.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of accelerometer sample since epoch time and
* expressed in nanoseconds.
* @param accelerationX linear acceleration along x-axis expressed in meters
* per squared second (m/s^2).
* @param accelerationY linear acceleration along y-axis expressed in meters
* per squared second (m/s^2).
* @param accelerationZ linear acceleration along z-axis expressed in meters
* per squared second (m/s^2).
*/
public void updateAccelerometerSample(final long timestamp, final float accelerationX,
final float accelerationY, final float accelerationZ) {
if (mSlamEstimator != null) {
mSlamEstimator.updateAccelerometerSample(timestamp, accelerationX,
accelerationY, accelerationZ);
}
}
/**
* Provides a new accelerometer sample to update SLAM estimation.
* This method must be called whenever the accelerometer sensor receives new
* data.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of accelerometer sample since epoch time and
* expressed in nanoseconds.
* @param data array containing x,y,z components of linear acceleration
* expressed in meters per squared second (m/s^2).
* @throws IllegalArgumentException if provided array does not have length
* 3.
*/
public void updateAccelerometerSample(final long timestamp, final float[] data) {
if (mSlamEstimator != null) {
mSlamEstimator.updateAccelerometerSample(timestamp, data);
}
}
/**
* Provides a new gyroscope sample to update SLAM estimation.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of gyroscope sample since epoch time and
* expressed in nanoseconds.
* @param angularSpeedX angular speed of rotation along x-axis expressed in
* radians per second (rad/s).
* @param angularSpeedY angular speed of rotation along y-axis expressed in
* radians per second (rad/s).
* @param angularSpeedZ angular speed of rotation along z-axis expressed in
* radians per second (rad/s).
*/
public void updateGyroscopeSample(final long timestamp, final float angularSpeedX,
final float angularSpeedY, final float angularSpeedZ) {
if (mSlamEstimator != null) {
mSlamEstimator.updateGyroscopeSample(timestamp, angularSpeedX,
angularSpeedY, angularSpeedZ);
}
}
/**
* Provides a new gyroscope sample to update SLAM estimation.
* If re-constructor is not running, calling this method has no effect.
*
* @param timestamp timestamp of gyroscope sample since epoch time and
* expressed in nanoseconds.
* @param data angular speed of rotation along x,y,z axes expressed in
* radians per second (rad/s).
* @throws IllegalArgumentException if provided array does not have length
* 3.
*/
public void updateGyroscopeSample(final long timestamp, final float[] data) {
if (mSlamEstimator != null) {
mSlamEstimator.updateGyroscopeSample(timestamp, data);
}
}
/**
* Configures calibration data on SLAM estimator if available.
*/
protected void setUpCalibrationData() {
D calibrationData = mConfiguration.getCalibrationData();
if (calibrationData != null) {
mSlamEstimator.setCalibrationData(calibrationData);
}
}
/**
* Configures listener of SLAM estimator
*/
protected void setUpSlamEstimatorListener() {
mSlamEstimator.setListener(new BaseSlamEstimator.BaseSlamEstimatorListener() {
@Override
public void onFullSampleReceived(final BaseSlamEstimator estimator) {
// not used
}
@Override
public void onFullSampleProcessed(final BaseSlamEstimator estimator) {
notifySlamStateAndCamera();
}
@Override
public void onCorrectWithPositionMeasure(final BaseSlamEstimator estimator) {
// not used
}
@Override
public void onCorrectedWithPositionMeasure(final BaseSlamEstimator estimator) {
notifySlamStateAndCamera();
}
private void notifySlamStateAndCamera() {
notifySlamStateIfNeeded();
notifySlamCameraIfNeeded();
}
});
}
/**
* Update scene scale using SLAM data.
*
* @param isInitialPairOfViews true if initial pair of views is being processed, false otherwise.
* @return true if scale was successfully updated, false otherwise.
*/
protected boolean updateScale(final boolean isInitialPairOfViews) {
try {
PinholeCamera metricCamera1 = mPreviousMetricEstimatedCamera.getCamera();
PinholeCamera metricCamera2 = mCurrentMetricEstimatedCamera.getCamera();
double slamPosX;
double slamPosY;
double slamPosZ;
double scale;
if (isInitialPairOfViews) {
// obtain baseline (camera separation from slam estimator data
slamPosX = mSlamEstimator.getStatePositionX();
slamPosY = mSlamEstimator.getStatePositionY();
slamPosZ = mSlamEstimator.getStatePositionZ();
mSlamPosition.setInhomogeneousCoordinates(slamPosX, slamPosY, slamPosZ);
if (!metricCamera1.isCameraCenterAvailable()) {
metricCamera1.decompose(false, true);
}
if (!metricCamera2.isCameraCenterAvailable()) {
metricCamera2.decompose(false, true);
}
final Point3D center1 = metricCamera1.getCameraCenter();
final Point3D center2 = metricCamera2.getCameraCenter();
final double baseline = center1.distanceTo(mSlamPosition);
final double estimatedBaseline = center1.distanceTo(center2);
scale = mCurrentScale = baseline / estimatedBaseline;
} else {
scale = mCurrentScale;
}
final MetricTransformation3D scaleTransformation =
new MetricTransformation3D(scale);
// update scale of cameras
final PinholeCamera euclideanCamera1 = scaleTransformation.transformAndReturnNew(metricCamera1);
final PinholeCamera euclideanCamera2 = scaleTransformation.transformAndReturnNew(metricCamera2);
if (!euclideanCamera2.isCameraCenterAvailable()) {
euclideanCamera2.decompose(false, true);
}
mSlamEstimator.correctWithPositionMeasure(euclideanCamera2.getCameraCenter(),
mConfiguration.getCameraPositionCovariance());
if (!isInitialPairOfViews) {
slamPosX = mSlamEstimator.getStatePositionX();
slamPosY = mSlamEstimator.getStatePositionY();
slamPosZ = mSlamEstimator.getStatePositionZ();
mSlamPosition.setInhomogeneousCoordinates(slamPosX, slamPosY, slamPosZ);
// adjust scale of current camera
final Point3D euclideanCenter2 = euclideanCamera2.getCameraCenter();
final double euclideanPosX = euclideanCenter2.getInhomX();
final double euclideanPosY = euclideanCenter2.getInhomY();
final double euclideanPosZ = euclideanCenter2.getInhomZ();
final double scaleVariationX = euclideanPosX / slamPosX;
final double scaleVariationY = euclideanPosY / slamPosY;
final double scaleVariationZ = euclideanPosZ / slamPosZ;
final double scaleVariation = (scaleVariationX + scaleVariationY + scaleVariationZ) / 3.0;
scale *= scaleVariation;
mCurrentScale = scale;
scaleTransformation.setScale(mCurrentScale);
// update camera
scaleTransformation.transform(metricCamera2, euclideanCamera2);
}
final double sqrScale = scale * scale;
mPreviousEuclideanEstimatedCamera = new EstimatedCamera();
mPreviousEuclideanEstimatedCamera.setCamera(euclideanCamera1);
mPreviousEuclideanEstimatedCamera.setViewId(mPreviousMetricEstimatedCamera.getViewId());
mPreviousEuclideanEstimatedCamera.setQualityScore(mPreviousMetricEstimatedCamera.getQualityScore());
if (mPreviousMetricEstimatedCamera.getCovariance() != null) {
mPreviousEuclideanEstimatedCamera.setCovariance(
mPreviousMetricEstimatedCamera.getCovariance().multiplyByScalarAndReturnNew(sqrScale));
}
mCurrentEuclideanEstimatedCamera = new EstimatedCamera();
mCurrentEuclideanEstimatedCamera.setCamera(euclideanCamera2);
mCurrentEuclideanEstimatedCamera.setViewId(mCurrentMetricEstimatedCamera.getViewId());
mCurrentEuclideanEstimatedCamera.setQualityScore(mCurrentMetricEstimatedCamera.getQualityScore());
if (mCurrentMetricEstimatedCamera.getCovariance() != null) {
mCurrentEuclideanEstimatedCamera.setCovariance(
mCurrentMetricEstimatedCamera.getCovariance().multiplyByScalarAndReturnNew(sqrScale));
}
// update scale of reconstructed points
final int numPoints = mActiveMetricReconstructedPoints.size();
final List metricReconstructedPoints3D = new ArrayList<>();
for (final ReconstructedPoint3D reconstructedPoint : mActiveMetricReconstructedPoints) {
metricReconstructedPoints3D.add(reconstructedPoint.getPoint());
}
final List euclideanReconstructedPoints3D =
scaleTransformation.transformPointsAndReturnNew(
metricReconstructedPoints3D);
// set scaled points into result
mActiveEuclideanReconstructedPoints = new ArrayList<>();
ReconstructedPoint3D euclideanPoint;
ReconstructedPoint3D metricPoint;
for (int i = 0; i < numPoints; i++) {
metricPoint = mActiveMetricReconstructedPoints.get(i);
euclideanPoint = new ReconstructedPoint3D();
euclideanPoint.setId(metricPoint.getId());
euclideanPoint.setPoint(euclideanReconstructedPoints3D.get(i));
euclideanPoint.setInlier(metricPoint.isInlier());
euclideanPoint.setQualityScore(metricPoint.getQualityScore());
if (metricPoint.getCovariance() != null) {
euclideanPoint.setCovariance(metricPoint.getCovariance().multiplyByScalarAndReturnNew(sqrScale));
}
euclideanPoint.setColorData(metricPoint.getColorData());
mActiveEuclideanReconstructedPoints.add(euclideanPoint);
}
return true;
} catch (final Exception e) {
mFailed = true;
//noinspection unchecked
mListener.onFail((R) this);
return false;
}
}
/**
* Notifies SLAM state if notification is enabled at configuration time.
*/
private void notifySlamStateIfNeeded() {
if (!mConfiguration.isNotifyAvailableSlamDataEnabled()) {
return;
}
final double positionX = mSlamEstimator.getStatePositionX();
final double positionY = mSlamEstimator.getStatePositionY();
final double positionZ = mSlamEstimator.getStatePositionZ();
final double velocityX = mSlamEstimator.getStateVelocityX();
final double velocityY = mSlamEstimator.getStateVelocityY();
final double velocityZ = mSlamEstimator.getStateVelocityZ();
final double accelerationX = mSlamEstimator.getStateAccelerationX();
final double accelerationY = mSlamEstimator.getStateAccelerationY();
final double accelerationZ = mSlamEstimator.getStateAccelerationZ();
final double quaternionA = mSlamEstimator.getStateQuaternionA();
final double quaternionB = mSlamEstimator.getStateQuaternionB();
final double quaternionC = mSlamEstimator.getStateQuaternionC();
final double quaternionD = mSlamEstimator.getStateQuaternionD();
final double angularSpeedX = mSlamEstimator.getStateAngularSpeedX();
final double angularSpeedY = mSlamEstimator.getStateAngularSpeedY();
final double angularSpeedZ = mSlamEstimator.getStateAngularSpeedZ();
//noinspection unchecked
mListener.onSlamDataAvailable((R) this, positionX, positionY, positionZ,
velocityX, velocityY, velocityZ,
accelerationX, accelerationY, accelerationZ,
quaternionA, quaternionB, quaternionC, quaternionD,
angularSpeedX, angularSpeedY, angularSpeedZ, mSlamEstimator.getStateCovariance());
}
/**
* Notifies estimated camera by means of SLAM if notification is enabled at
* configuration time and intrinsics are already available.
*/
private void notifySlamCameraIfNeeded() {
if (!mConfiguration.isNotifyEstimatedSlamCameraEnabled()) {
return;
}
// try with current camera
PinholeCamera camera = mCurrentEuclideanEstimatedCamera != null ?
mCurrentEuclideanEstimatedCamera.getCamera() : null;
if (camera == null) {
// if not available try with previous camera
camera = mPreviousEuclideanEstimatedCamera != null ?
mPreviousEuclideanEstimatedCamera.getCamera() : null;
}
try {
PinholeCameraIntrinsicParameters intrinsicParameters = null;
if (camera != null) {
if (!camera.areIntrinsicParametersAvailable()) {
// decompose camera to obtain intrinsic parameters
camera.decompose();
}
intrinsicParameters = camera.getIntrinsicParameters();
} else if (mConfiguration.getInitialIntrinsic1() != null) {
intrinsicParameters = mConfiguration.getInitialIntrinsic1();
} else if (mConfiguration.getInitialIntrinsic2() != null) {
intrinsicParameters = mConfiguration.getInitialIntrinsic2();
} else if (mConfiguration.getAdditionalCamerasIntrinsics() != null) {
intrinsicParameters = mConfiguration.getAdditionalCamerasIntrinsics();
}
if (intrinsicParameters == null) {
return;
}
final double positionX = mSlamEstimator.getStatePositionX();
final double positionY = mSlamEstimator.getStatePositionY();
final double positionZ = mSlamEstimator.getStatePositionZ();
mSlamPosition.setInhomogeneousCoordinates(positionX, positionY, positionZ);
final double quaternionA = mSlamEstimator.getStateQuaternionA();
final double quaternionB = mSlamEstimator.getStateQuaternionB();
final double quaternionC = mSlamEstimator.getStateQuaternionC();
final double quaternionD = mSlamEstimator.getStateQuaternionD();
mSlamRotation.setA(quaternionA);
mSlamRotation.setB(quaternionB);
mSlamRotation.setC(quaternionC);
mSlamRotation.setD(quaternionD);
mSlamCamera.setIntrinsicAndExtrinsicParameters(intrinsicParameters, mSlamRotation,
mSlamPosition);
//noinspection unchecked
mListener.onSlamCameraEstimated((R) this, mSlamCamera);
} catch (final GeometryException ignore) {
// do nothing
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy