
com.irurueta.ar.slam.BaseCalibrationData Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of irurueta-ar Show documentation
Show all versions of irurueta-ar Show documentation
Augmented Reality and 3D reconstruction library
/*
* Copyright (C) 2016 Alberto Irurueta Carro ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.irurueta.ar.slam;
import com.irurueta.algebra.Matrix;
import com.irurueta.algebra.WrongSizeException;
import com.irurueta.statistics.InvalidCovarianceMatrixException;
import com.irurueta.statistics.MultivariateNormalDist;
import java.io.Serializable;
/**
* Contains control calibration data for a SLAM estimator during
* Kalman filtering prediction stage.
*/
public abstract class BaseCalibrationData implements Serializable {
/**
* Length of control signal.
*/
private final int mControlLength;
/**
* Length of state in SLAM estimator.
*/
private final int mStateLength;
/**
* Control signal mean to correct biases in control signal.
*/
private double[] mControlMean;
/**
* Control signal covariance to take into account for estimation of process
* noise during Kalman prediction stage.
*/
private Matrix mControlCovariance;
/**
* Evaluator for distribution propagation.
*/
private MultivariateNormalDist.JacobianEvaluator mEvaluator;
/**
* Constructor.
*
* @param controlLength length of control signal.
* @param stateLength length of state in SLAM estimator.
* @throws IllegalArgumentException if provided length is not greater than
* zero.
*/
protected BaseCalibrationData(final int controlLength, final int stateLength) {
if (controlLength < 1 || stateLength < 1) {
throw new IllegalArgumentException(
"length must be greater than zero");
}
mControlLength = controlLength;
mStateLength = stateLength;
}
/**
* Gets length of control signal.
*
* @return length of control signal.
*/
public int getControlLength() {
return mControlLength;
}
/**
* Gets length of state in SLAM estimator.
*
* @return length of state in SLAM estimator.
*/
public int getStateLength() {
return mStateLength;
}
/**
* Gets control signal mean to correct biases in control signal.
*
* @return control signal mean.
*/
public double[] getControlMean() {
return mControlMean;
}
/**
* Sets control signal mean to correct biases in control signal.
*
* @param controlMean control signal mean.
* @throws IllegalArgumentException if provided array does not have expected
* length.
*/
public void setControlMean(final double[] controlMean) {
if (controlMean.length != mControlLength) {
throw new IllegalArgumentException("wrong mean length");
}
mControlMean = controlMean;
}
/**
* Gets control signal covariance to take into account for estimation of
* process noise during Kalman prediction stage.
*
* @return control signal covariance.
*/
public Matrix getControlCovariance() {
return mControlCovariance;
}
/**
* Sets control signal covariance to take into account for estimation of
* process noise during Kalman prediction stage.
*
* @param controlCovariance control signal covariance.
* @throws IllegalArgumentException if provided covariance size is wrong.
*/
public void setControlCovariance(final Matrix controlCovariance) {
if (controlCovariance.getRows() != mControlLength ||
controlCovariance.getColumns() != mControlLength) {
throw new IllegalArgumentException("wrong covariance size");
}
mControlCovariance = controlCovariance;
}
/**
* Sets control signal mean and covariance to correct biases in control
* signal and to take into account for estimation process noise during
* Kalman prediction stage.
*
* @param controlMean control signal mean.
* @param controlCovariance control signal covariance.
* @throws IllegalArgumentException if provided mean or covariance do not
* have proper size or length.
*/
public void setControlMeanAndCovariance(final double[] controlMean,
final Matrix controlCovariance) {
if (controlMean.length != mControlLength) {
throw new IllegalArgumentException("wrong mean length");
}
if (controlCovariance.getRows() != mControlLength ||
controlCovariance.getColumns() != mControlLength) {
throw new IllegalArgumentException("wrong covariance size");
}
mControlMean = controlMean;
mControlCovariance = controlCovariance;
}
/**
* Propagates calibrated control signal covariance using current control
* jacobian matrix.
* The propagated distribution can be used during prediction stage in Kalman
* filtering.
*
* @param controlJacobian current control jacobian matrix.
* @return propagated distribution.
* @throws InvalidCovarianceMatrixException if estimated covariance is not
* valid.
* @throws IllegalArgumentException if provided jacobian has invalid size.
*/
public MultivariateNormalDist propagateWithControlJacobian(
final Matrix controlJacobian) throws InvalidCovarianceMatrixException {
final MultivariateNormalDist dist = new MultivariateNormalDist();
propagateWithControlJacobian(controlJacobian, dist);
return dist;
}
/**
* Propagates calibrated control signal covariance using current control
* jacobian matrix.
* The propagated distribution can be used during prediction stage in Kalman
* filtering.
*
* @param controlJacobian current control jacobian matrix.
* @param result instance where propagated distribution will be stored.
* @throws InvalidCovarianceMatrixException if estimated covariance is not
* valid.
* @throws IllegalArgumentException if provided jacobian has invalid size.
*/
public void propagateWithControlJacobian(
final Matrix controlJacobian,
final MultivariateNormalDist result) throws InvalidCovarianceMatrixException {
if (controlJacobian.getRows() != mStateLength ||
controlJacobian.getColumns() != mControlLength) {
throw new IllegalArgumentException("wrong control jacobian size");
}
if (mEvaluator == null) {
mEvaluator = new MultivariateNormalDist.JacobianEvaluator() {
@Override
public void evaluate(final double[] x, final double[] y, final Matrix jacobian) {
controlJacobian.copyTo(jacobian);
}
@Override
public int getNumberOfVariables() {
return mStateLength;
}
};
}
try {
MultivariateNormalDist.propagate(mEvaluator, mControlMean,
mControlCovariance, result);
} catch (final WrongSizeException e) {
throw new InvalidCovarianceMatrixException(e);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy