Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
This file is part of the iText (R) project.
Copyright (c) 1998-2022 iText Group NV
Authors: Bruno Lowagie, Paulo Soares, et al.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License version 3
as published by the Free Software Foundation with the addition of the
following permission added to Section 15 as permitted in Section 7(a):
FOR ANY PART OF THE COVERED WORK IN WHICH THE COPYRIGHT IS OWNED BY
ITEXT GROUP. ITEXT GROUP DISCLAIMS THE WARRANTY OF NON INFRINGEMENT
OF THIRD PARTY RIGHTS
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, see http://www.gnu.org/licenses or write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA, 02110-1301 USA, or download the license from the following URL:
http://itextpdf.com/terms-of-use/
The interactive user interfaces in modified source and object code versions
of this program must display Appropriate Legal Notices, as required under
Section 5 of the GNU Affero General Public License.
In accordance with Section 7(b) of the GNU Affero General Public License,
a covered work must retain the producer line in every PDF that is created
or manipulated using iText.
You can be released from the requirements of the license by purchasing
a commercial license. Buying such a license is mandatory as soon as you
develop commercial activities involving the iText software without
disclosing the source code of your own applications.
These activities include: offering paid services to customers as an ASP,
serving PDFs on the fly in a web application, shipping iText with a closed
source product.
For more information, please contact iText Software Corp. at this
address: [email protected]
*/
package com.itextpdf.barcodes.qrcode;
import com.itextpdf.barcodes.exceptions.WriterException;
import java.util.Map;
/**
* This object renders a QR Code as a ByteMatrix 2D array of greyscale values.
*
* @author [email protected] (Daniel Switkin)
*/
public final class QRCodeWriter {
private static final int QUIET_ZONE_SIZE = 4;
/**
* Encode a string into a QR code with dimensions width x height, using error-correction level L and the smallest version for which he contents fit into the QR-code?
* @param contents String to encode into the QR code
* @param width width of the QR-code
* @param height height of the QR-code
* @return 2D Greyscale map containing the visual representation of the QR-code, stored as a Bytematrix
* @throws WriterException exception is thrown in case an error occurs when encoding a barcode using the Writer framework
*/
public ByteMatrix encode(String contents, int width, int height)
throws WriterException {
return encode(contents, width, height, null);
}
/**
* Encode a string into a QR code with dimensions width x height. Hints contains suggestions for error-correction level and version.
* The default error-correction level is L, the default version is the smallest version for which the contents will fit into the QR-code.
* @param contents String to encode into the QR code
* @param width width of the QR-code
* @param height height of the QR-code
* @param hints Map containing suggestions for error-correction level and version
* @return 2D Greyscale map containing the visual representation of the QR-code, stored as a Bytematrix
* @throws WriterException exception is thrown in case an error occurs when encoding a barcode using the Writer framework
*/
public ByteMatrix encode(String contents, int width, int height,
Map hints) throws WriterException {
if (contents == null || contents.length() == 0) {
throw new IllegalArgumentException("Found empty contents");
}
if (width < 0 || height < 0) {
throw new IllegalArgumentException("Requested dimensions are too small: " + width + 'x' +
height);
}
ErrorCorrectionLevel errorCorrectionLevel = ErrorCorrectionLevel.L;
if (hints != null) {
ErrorCorrectionLevel requestedECLevel = (ErrorCorrectionLevel) hints.get(EncodeHintType.ERROR_CORRECTION);
if (requestedECLevel != null) {
errorCorrectionLevel = requestedECLevel;
}
}
QRCode code = new QRCode();
Encoder.encode(contents, errorCorrectionLevel, hints, code);
return renderResult(code, width, height);
}
// Note that the input matrix uses 0 == white, 1 == black, while the output matrix uses
// 0 == black, 255 == white (i.e. an 8 bit greyscale bitmap).
private static ByteMatrix renderResult(QRCode code, int width, int height) {
ByteMatrix input = code.getMatrix();
int inputWidth = input.getWidth();
int inputHeight = input.getHeight();
int qrWidth = inputWidth + (QUIET_ZONE_SIZE << 1);
int qrHeight = inputHeight + (QUIET_ZONE_SIZE << 1);
int outputWidth = Math.max(width, qrWidth);
int outputHeight = Math.max(height, qrHeight);
int multiple = Math.min(outputWidth / qrWidth, outputHeight / qrHeight);
// Padding includes both the quiet zone and the extra white pixels to accommodate the requested
// dimensions. For example, if input is 25x25 the QR will be 33x33 including the quiet zone.
// If the requested size is 200x160, the multiple will be 4, for a QR of 132x132. These will
// handle all the padding from 100x100 (the actual QR) up to 200x160.
int leftPadding = (outputWidth - (inputWidth * multiple)) / 2;
int topPadding = (outputHeight - (inputHeight * multiple)) / 2;
ByteMatrix output = new ByteMatrix(outputWidth, outputHeight);
byte[][] outputArray = output.getArray();
// We could be tricky and use the first row in each set of multiple as the temporary storage,
// instead of allocating this separate array.
byte[] row = new byte[outputWidth];
// 1. Write the white lines at the top
for (int y = 0; y < topPadding; y++) {
setRowColor(outputArray[y], (byte) 255);
}
// 2. Expand the QR image to the multiple
byte[][] inputArray = input.getArray();
for (int y = 0; y < inputHeight; y++) {
// a. Write the white pixels at the left of each row
for (int x = 0; x < leftPadding; x++) {
row[x] = (byte) 255;
}
// b. Write the contents of this row of the barcode
int offset = leftPadding;
for (int x = 0; x < inputWidth; x++) {
byte value = (inputArray[y][x] == 1) ? (byte) 0 : (byte) 255;
for (int z = 0; z < multiple; z++) {
row[offset + z] = value;
}
offset += multiple;
}
// c. Write the white pixels at the right of each row
offset = leftPadding + (inputWidth * multiple);
for (int x = offset; x < outputWidth; x++) {
row[x] = (byte) 255;
}
// d. Write the completed row multiple times
offset = topPadding + (y * multiple);
for (int z = 0; z < multiple; z++) {
System.arraycopy(row, 0, outputArray[offset + z], 0, outputWidth);
}
}
// 3. Write the white lines at the bottom
int offset = topPadding + (inputHeight * multiple);
for (int y = offset; y < outputHeight; y++) {
setRowColor(outputArray[y], (byte) 255);
}
return output;
}
private static void setRowColor(byte[] row, byte value) {
for (int x = 0; x < row.length; x++) {
row[x] = value;
}
}
}