All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.itextpdf.kernel.geom.Matrix Maven / Gradle / Ivy

There is a newer version: 9.0.0
Show newest version
/*
    This file is part of the iText (R) project.
    Copyright (c) 1998-2024 Apryse Group NV
    Authors: Apryse Software.

    This program is offered under a commercial and under the AGPL license.
    For commercial licensing, contact us at https://itextpdf.com/sales.  For AGPL licensing, see below.

    AGPL licensing:
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see .
 */
package com.itextpdf.kernel.geom;

import java.util.Arrays;

/**
 * Keeps all the values of a 3 by 3 matrix and allows you to
 * do some math with matrices.
 */
public class Matrix {

    /** the row=1, col=1 position ('a') in the matrix. */
    public static final int I11 = 0;
    /** the row=1, col=2 position ('b') in the matrix. */
    public static final int I12 = 1;
    /** the row=1, col=3 position (always 0 for 2-D) in the matrix. */
    public static final int I13 = 2;
    /** the row=2, col=1 position ('c') in the matrix. */
    public static final int I21 = 3;
    /** the row=2, col=2 position ('d') in the matrix. */
    public static final int I22 = 4;
    /** the row=2, col=3 position (always 0 for 2-D) in the matrix. */
    public static final int I23 = 5;
    /** the row=3, col=1 ('e', or X translation) position in the matrix. */
    public static final int I31 = 6;
    /** the row=3, col=2 ('f', or Y translation) position in the matrix. */
    public static final int I32 = 7;
    /** the row=3, col=3 position (always 1 for 2-D) in the matrix. */
    public static final int I33 = 8;

    /**
     * The values inside the matrix (the identity matrix by default).
     *
     * 

* For reference, the indeces are as follows: *
I11 I12 I13 *
I21 I22 I23 *
I31 I32 I33 */ private final float[] vals = new float[]{ 1,0,0, 0,1,0, 0,0,1 }; /** * constructs a new Matrix with identity. */ public Matrix() { } /** * Constructs a matrix that represents translation. * * @param tx x-axis translation * @param ty y-axis translation */ public Matrix(float tx, float ty) { vals[I31] = tx; vals[I32] = ty; } /** * Creates a Matrix with 9 specified entries. * * @param e11 element at position (1,1) * @param e12 element at position (1,2) * @param e13 element at position (1,3) * @param e21 element at position (2,1) * @param e22 element at position (2,2) * @param e23 element at position (2,3) * @param e31 element at position (3,1) * @param e32 element at position (3,2) * @param e33 element at position (3,3) */ public Matrix(float e11, float e12, float e13, float e21, float e22, float e23, float e31, float e32, float e33){ vals[I11] = e11; vals[I12] = e12; vals[I13] = e13; vals[I21] = e21; vals[I22] = e22; vals[I23] = e23; vals[I31] = e31; vals[I32] = e32; vals[I33] = e33; } /** * Creates a Matrix with 6 specified entries. * The third column will always be [0 0 1] * (row, column) * * @param a element at (1,1) * @param b element at (1,2) * @param c element at (2,1) * @param d element at (2,2) * @param e element at (3,1) * @param f element at (3,2) */ public Matrix(float a, float b, float c, float d, float e, float f){ vals[I11] = a; vals[I12] = b; vals[I13] = 0; vals[I21] = c; vals[I22] = d; vals[I23] = 0; vals[I31] = e; vals[I32] = f; vals[I33] = 1; } /** * Gets a specific value inside the matrix. * *

* For reference, the indeces are as follows: *
I11 I12 I13 *
I21 I22 I23 *
I31 I32 I33 * * @param index an array index corresponding with a value inside the matrix * @return the value at that specific position. */ public float get(int index){ return vals[index]; } /** * multiplies this matrix by 'b' and returns the result. * See http://en.wikipedia.org/wiki/Matrix_multiplication * * @param by The matrix to multiply by * @return the resulting matrix */ public Matrix multiply(Matrix by){ Matrix rslt = new Matrix(); float[] a = vals; float[] b = by.vals; float[] c = rslt.vals; c[I11] = a[I11]*b[I11] + a[I12]*b[I21] + a[I13]*b[I31]; c[I12] = a[I11]*b[I12] + a[I12]*b[I22] + a[I13]*b[I32]; c[I13] = a[I11]*b[I13] + a[I12]*b[I23] + a[I13]*b[I33]; c[I21] = a[I21]*b[I11] + a[I22]*b[I21] + a[I23]*b[I31]; c[I22] = a[I21]*b[I12] + a[I22]*b[I22] + a[I23]*b[I32]; c[I23] = a[I21]*b[I13] + a[I22]*b[I23] + a[I23]*b[I33]; c[I31] = a[I31]*b[I11] + a[I32]*b[I21] + a[I33]*b[I31]; c[I32] = a[I31]*b[I12] + a[I32]*b[I22] + a[I33]*b[I32]; c[I33] = a[I31]*b[I13] + a[I32]*b[I23] + a[I33]*b[I33]; return rslt; } /** * Adds a matrix from this matrix and returns the results. * * @param arg the matrix to subtract from this matrix * @return a Matrix object */ public Matrix add(Matrix arg){ Matrix rslt = new Matrix(); float[] a = vals; float[] b = arg.vals; float[] c = rslt.vals; c[I11] = a[I11]+b[I11]; c[I12] = a[I12]+b[I12]; c[I13] = a[I13]+b[I13]; c[I21] = a[I21]+b[I21]; c[I22] = a[I22]+b[I22]; c[I23] = a[I23]+b[I23]; c[I31] = a[I31]+b[I31]; c[I32] = a[I32]+b[I32]; c[I33] = a[I33]+b[I33]; return rslt; } /** * Subtracts a matrix from this matrix and returns the results. * * @param arg the matrix to subtract from this matrix * @return a Matrix object */ public Matrix subtract(Matrix arg){ Matrix rslt = new Matrix(); float[] a = vals; float[] b = arg.vals; float[] c = rslt.vals; c[I11] = a[I11]-b[I11]; c[I12] = a[I12]-b[I12]; c[I13] = a[I13]-b[I13]; c[I21] = a[I21]-b[I21]; c[I22] = a[I22]-b[I22]; c[I23] = a[I23]-b[I23]; c[I31] = a[I31]-b[I31]; c[I32] = a[I32]-b[I32]; c[I33] = a[I33]-b[I33]; return rslt; } /** * Computes the determinant of the matrix. * * @return the determinant of the matrix */ public float getDeterminant(){ // ref http://en.wikipedia.org/wiki/Determinant // note that in PDF, I13 and I23 are always 0 and I33 is always 1 // so this could be simplified/faster return vals[I11] * vals[I22] * vals[I33] + vals[I12] * vals[I23] * vals[I31] + vals[I13] * vals[I21] * vals[I32] - vals[I11] * vals[I23] * vals[I32] - vals[I12] * vals[I21] * vals[I33] - vals[I13] * vals[I22] * vals[I31]; } /** * Checks equality of matrices. * * @param obj the other Matrix that needs to be compared with this matrix. * @return true if both matrices are equal * @see java.lang.Object#equals(java.lang.Object) */ @Override public boolean equals(Object obj) { if (!(obj instanceof Matrix)) return false; return Arrays.equals(vals, ((Matrix) obj).vals); } /** * Generates a hash code for this object. * * @return the hash code of this object * @see java.lang.Object#hashCode() */ @Override public int hashCode() { return Arrays.hashCode(vals); } /** * Generates a String representation of the matrix. * * @return the values, delimited with tabs and newlines. * @see java.lang.Object#toString() */ @Override public String toString() { return vals[I11] + "\t" + vals[I12] + "\t" + vals[I13] + "\n" + vals[I21] + "\t" + vals[I22] + "\t" + vals[I23] + "\n" + vals[I31] + "\t" + vals[I32] + "\t" + vals[I33]; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy