com.itextpdf.io.codec.brotli.dec.Huffman Maven / Gradle / Ivy
/* Copyright 2015 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
package com.itextpdf.io.codec.brotli.dec;
/**
* Utilities for building Huffman decoding tables.
*/
final class Huffman {
/**
* Maximum possible Huffman table size for an alphabet size of 704, max code length 15 and root
* table bits 8.
*/
static final int HUFFMAN_MAX_TABLE_SIZE = 1080;
private static final int MAX_LENGTH = 15;
/**
* Returns reverse(reverse(key, len) + 1, len).
*
* reverse(key, len) is the bit-wise reversal of the len least significant bits of key.
*/
private static int getNextKey(int key, int len) {
int step = 1 << (len - 1);
while ((key & step) != 0) {
step >>= 1;
}
return (key & (step - 1)) + step;
}
/**
* Stores {@code item} in {@code table[0], table[step], table[2 * step] .., table[end]}.
*
*
Assumes that end is an integer multiple of step.
*/
private static void replicateValue(int[] table, int offset, int step, int end, int item) {
do {
end -= step;
table[offset + end] = item;
} while (end > 0);
}
/**
* @param count histogram of bit lengths for the remaining symbols,
* @param len code length of the next processed symbol.
* @return table width of the next 2nd level table.
*/
private static int nextTableBitSize(int[] count, int len, int rootBits) {
int left = 1 << (len - rootBits);
while (len < MAX_LENGTH) {
left -= count[len];
if (left <= 0) {
break;
}
len++;
left <<= 1;
}
return len - rootBits;
}
/**
* Builds Huffman lookup table assuming code lengths are in symbol order.
*/
static void buildHuffmanTable(int[] rootTable, int tableOffset, int rootBits, int[] codeLengths,
int codeLengthsSize) {
int key; // Reversed prefix code.
int[] sorted = new int[codeLengthsSize]; // Symbols sorted by code length.
// TODO: fill with zeroes?
int[] count = new int[MAX_LENGTH + 1]; // Number of codes of each length.
int[] offset = new int[MAX_LENGTH + 1]; // Offsets in sorted table for each length.
int symbol;
// Build histogram of code lengths.
for (symbol = 0; symbol < codeLengthsSize; symbol++) {
count[codeLengths[symbol]]++;
}
// Generate offsets into sorted symbol table by code length.
offset[1] = 0;
for (int len = 1; len < MAX_LENGTH; len++) {
offset[len + 1] = offset[len] + count[len];
}
// Sort symbols by length, by symbol order within each length.
for (symbol = 0; symbol < codeLengthsSize; symbol++) {
if (codeLengths[symbol] != 0) {
sorted[offset[codeLengths[symbol]]++] = symbol;
}
}
int tableBits = rootBits;
int tableSize = 1 << tableBits;
int totalSize = tableSize;
// Special case code with only one value.
if (offset[MAX_LENGTH] == 1) {
for (key = 0; key < totalSize; key++) {
rootTable[tableOffset + key] = sorted[0];
}
return;
}
// Fill in root table.
key = 0;
symbol = 0;
for (int len = 1, step = 2; len <= rootBits; len++, step <<= 1) {
for (; count[len] > 0; count[len]--) {
replicateValue(rootTable, tableOffset + key, step, tableSize, len << 16 | sorted[symbol++]);
key = getNextKey(key, len);
}
}
// Fill in 2nd level tables and add pointers to root table.
int mask = totalSize - 1;
int low = -1;
int currentOffset = tableOffset;
for (int len = rootBits + 1, step = 2; len <= MAX_LENGTH; len++, step <<= 1) {
for (; count[len] > 0; count[len]--) {
if ((key & mask) != low) {
currentOffset += tableSize;
tableBits = nextTableBitSize(count, len, rootBits);
tableSize = 1 << tableBits;
totalSize += tableSize;
low = key & mask;
rootTable[tableOffset + low] =
(tableBits + rootBits) << 16 | (currentOffset - tableOffset - low);
}
replicateValue(rootTable, currentOffset + (key >> rootBits), step, tableSize,
(len - rootBits) << 16 | sorted[symbol++]);
key = getNextKey(key, len);
}
}
}
}