com.itextpdf.awt.geom.GeneralPath Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of itextpdf Show documentation
Show all versions of itextpdf Show documentation
iText, a free Java-PDF library
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This code was originally part of the Apache Harmony project.
* The Apache Harmony project has been discontinued.
* That's why we imported the code into iText.
*/
/**
* @author Denis M. Kishenko
*/
package com.itextpdf.awt.geom;
import java.util.NoSuchElementException;
import com.itextpdf.awt.geom.gl.Crossing;
import com.itextpdf.awt.geom.misc.Messages;
public final class GeneralPath implements Shape, Cloneable {
public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD;
public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO;
/**
* The buffers size
*/
private static final int BUFFER_SIZE = 10;
/**
* The buffers capacity
*/
private static final int BUFFER_CAPACITY = 10;
/**
* The point's types buffer
*/
byte[] types;
/**
* The points buffer
*/
float[] points;
/**
* The point's type buffer size
*/
int typeSize;
/**
* The points buffer size
*/
int pointSize;
/**
* The path rule
*/
int rule;
/**
* The space amount in points buffer for different segmenet's types
*/
static int pointShift[] = {
2, // MOVETO
2, // LINETO
4, // QUADTO
6, // CUBICTO
0}; // CLOSE
/*
* GeneralPath path iterator
*/
class Iterator implements PathIterator {
/**
* The current cursor position in types buffer
*/
int typeIndex;
/**
* The current cursor position in points buffer
*/
int pointIndex;
/**
* The source GeneralPath object
*/
GeneralPath p;
/**
* The path iterator transformation
*/
AffineTransform t;
/**
* Constructs a new GeneralPath.Iterator for given general path
* @param path - the source GeneralPath object
*/
Iterator(GeneralPath path) {
this(path, null);
}
/**
* Constructs a new GeneralPath.Iterator for given general path and transformation
* @param path - the source GeneralPath object
* @param at - the AffineTransform object to apply rectangle path
*/
Iterator(GeneralPath path, AffineTransform at) {
this.p = path;
this.t = at;
}
public int getWindingRule() {
return p.getWindingRule();
}
public boolean isDone() {
return typeIndex >= p.typeSize;
}
public void next() {
typeIndex++;
}
public int currentSegment(double[] coords) {
if (isDone()) {
// awt.4B=Iterator out of bounds
throw new NoSuchElementException(Messages.getString("awt.4B")); //$NON-NLS-1$
}
int type = p.types[typeIndex];
int count = GeneralPath.pointShift[type];
for (int i = 0; i < count; i++) {
coords[i] = p.points[pointIndex + i];
}
if (t != null) {
t.transform(coords, 0, coords, 0, count / 2);
}
pointIndex += count;
return type;
}
public int currentSegment(float[] coords) {
if (isDone()) {
// awt.4B=Iterator out of bounds
throw new NoSuchElementException(Messages.getString("awt.4B")); //$NON-NLS-1$
}
int type = p.types[typeIndex];
int count = GeneralPath.pointShift[type];
System.arraycopy(p.points, pointIndex, coords, 0, count);
if (t != null) {
t.transform(coords, 0, coords, 0, count / 2);
}
pointIndex += count;
return type;
}
}
public GeneralPath() {
this(WIND_NON_ZERO, BUFFER_SIZE);
}
public GeneralPath(int rule) {
this(rule, BUFFER_SIZE);
}
public GeneralPath(int rule, int initialCapacity) {
setWindingRule(rule);
types = new byte[initialCapacity];
points = new float[initialCapacity * 2];
}
public GeneralPath(Shape shape) {
this(WIND_NON_ZERO, BUFFER_SIZE);
PathIterator p = shape.getPathIterator(null);
setWindingRule(p.getWindingRule());
append(p, false);
}
public void setWindingRule(int rule) {
if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO) {
// awt.209=Invalid winding rule value
throw new java.lang.IllegalArgumentException(Messages.getString("awt.209")); //$NON-NLS-1$
}
this.rule = rule;
}
public int getWindingRule() {
return rule;
}
/**
* Checks points and types buffer size to add pointCount points. If necessary realloc buffers to enlarge size.
* @param pointCount - the point count to be added in buffer
*/
void checkBuf(int pointCount, boolean checkMove) {
if (checkMove && typeSize == 0) {
// awt.20A=First segment should be SEG_MOVETO type
throw new IllegalPathStateException(Messages.getString("awt.20A")); //$NON-NLS-1$
}
if (typeSize == types.length) {
byte tmp[] = new byte[typeSize + BUFFER_CAPACITY];
System.arraycopy(types, 0, tmp, 0, typeSize);
types = tmp;
}
if (pointSize + pointCount > points.length) {
float tmp[] = new float[pointSize + Math.max(BUFFER_CAPACITY * 2, pointCount)];
System.arraycopy(points, 0, tmp, 0, pointSize);
points = tmp;
}
}
public void moveTo(float x, float y) {
if (typeSize > 0 && types[typeSize - 1] == PathIterator.SEG_MOVETO) {
points[pointSize - 2] = x;
points[pointSize - 1] = y;
} else {
checkBuf(2, false);
types[typeSize++] = PathIterator.SEG_MOVETO;
points[pointSize++] = x;
points[pointSize++] = y;
}
}
public void lineTo(float x, float y) {
checkBuf(2, true);
types[typeSize++] = PathIterator.SEG_LINETO;
points[pointSize++] = x;
points[pointSize++] = y;
}
public void quadTo(float x1, float y1, float x2, float y2) {
checkBuf(4, true);
types[typeSize++] = PathIterator.SEG_QUADTO;
points[pointSize++] = x1;
points[pointSize++] = y1;
points[pointSize++] = x2;
points[pointSize++] = y2;
}
public void curveTo(float x1, float y1, float x2, float y2, float x3, float y3) {
checkBuf(6, true);
types[typeSize++] = PathIterator.SEG_CUBICTO;
points[pointSize++] = x1;
points[pointSize++] = y1;
points[pointSize++] = x2;
points[pointSize++] = y2;
points[pointSize++] = x3;
points[pointSize++] = y3;
}
public void closePath() {
if (typeSize == 0 || types[typeSize - 1] != PathIterator.SEG_CLOSE) {
checkBuf(0, true);
types[typeSize++] = PathIterator.SEG_CLOSE;
}
}
public void append(Shape shape, boolean connect) {
PathIterator p = shape.getPathIterator(null);
append(p, connect);
}
public void append(PathIterator path, boolean connect) {
while (!path.isDone()) {
float coords[] = new float[6];
switch (path.currentSegment(coords)) {
case PathIterator.SEG_MOVETO:
if (!connect || typeSize == 0) {
moveTo(coords[0], coords[1]);
break;
}
if (types[typeSize - 1] != PathIterator.SEG_CLOSE &&
points[pointSize - 2] == coords[0] &&
points[pointSize - 1] == coords[1])
{
break;
}
// NO BREAK;
case PathIterator.SEG_LINETO:
lineTo(coords[0], coords[1]);
break;
case PathIterator.SEG_QUADTO:
quadTo(coords[0], coords[1], coords[2], coords[3]);
break;
case PathIterator.SEG_CUBICTO:
curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]);
break;
case PathIterator.SEG_CLOSE:
closePath();
break;
}
path.next();
connect = false;
}
}
public Point2D getCurrentPoint() {
if (typeSize == 0) {
return null;
}
int j = pointSize - 2;
if (types[typeSize - 1] == PathIterator.SEG_CLOSE) {
for (int i = typeSize - 2; i > 0; i--) {
int type = types[i];
if (type == PathIterator.SEG_MOVETO) {
break;
}
j -= pointShift[type];
}
}
return new Point2D.Float(points[j], points[j + 1]);
}
public void reset() {
typeSize = 0;
pointSize = 0;
}
public void transform(AffineTransform t) {
t.transform(points, 0, points, 0, pointSize / 2);
}
public Shape createTransformedShape(AffineTransform t) {
GeneralPath p = (GeneralPath)clone();
if (t != null) {
p.transform(t);
}
return p;
}
public Rectangle2D getBounds2D() {
float rx1, ry1, rx2, ry2;
if (pointSize == 0) {
rx1 = ry1 = rx2 = ry2 = 0.0f;
} else {
int i = pointSize - 1;
ry1 = ry2 = points[i--];
rx1 = rx2 = points[i--];
while (i > 0) {
float y = points[i--];
float x = points[i--];
if (x < rx1) {
rx1 = x;
} else
if (x > rx2) {
rx2 = x;
}
if (y < ry1) {
ry1 = y;
} else
if (y > ry2) {
ry2 = y;
}
}
}
return new Rectangle2D.Float(rx1, ry1, rx2 - rx1, ry2 - ry1);
}
public Rectangle getBounds() {
return getBounds2D().getBounds();
}
/**
* Checks cross count according to path rule to define is it point inside shape or not.
* @param cross - the point cross count
* @return true if point is inside path, or false otherwise
*/
boolean isInside(int cross) {
if (rule == WIND_NON_ZERO) {
return Crossing.isInsideNonZero(cross);
}
return Crossing.isInsideEvenOdd(cross);
}
public boolean contains(double px, double py) {
return isInside(Crossing.crossShape(this, px, py));
}
public boolean contains(double rx, double ry, double rw, double rh) {
int cross = Crossing.intersectShape(this, rx, ry, rw, rh);
return cross != Crossing.CROSSING && isInside(cross);
}
public boolean intersects(double rx, double ry, double rw, double rh) {
int cross = Crossing.intersectShape(this, rx, ry, rw, rh);
return cross == Crossing.CROSSING || isInside(cross);
}
public boolean contains(Point2D p) {
return contains(p.getX(), p.getY());
}
public boolean contains(Rectangle2D r) {
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
public boolean intersects(Rectangle2D r) {
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
public PathIterator getPathIterator(AffineTransform t) {
return new Iterator(this, t);
}
public PathIterator getPathIterator(AffineTransform t, double flatness) {
return new FlatteningPathIterator(getPathIterator(t), flatness);
}
@Override
public Object clone() {
try {
GeneralPath p = (GeneralPath) super.clone();
p.types = types.clone();
p.points = points.clone();
return p;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
}