All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.android.dx.dex.code.InsnFormat Maven / Gradle / Ivy

/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.android.dx.dex.code;

import com.android.dx.rop.code.RegisterSpec;
import com.android.dx.rop.code.RegisterSpecList;
import com.android.dx.rop.cst.Constant;
import com.android.dx.rop.cst.CstInteger;
import com.android.dx.rop.cst.CstKnownNull;
import com.android.dx.rop.cst.CstLiteral64;
import com.android.dx.rop.cst.CstLiteralBits;
import com.android.dx.rop.cst.CstString;
import com.android.dx.util.AnnotatedOutput;
import com.android.dx.util.Hex;
import java.util.BitSet;

/**
 * Base class for all instruction format handlers. Instruction format
 * handlers know how to translate {@link DalvInsn} instances into
 * streams of code units, as well as human-oriented listing strings
 * representing such translations.
 */
public abstract class InsnFormat {
    /**
     * flag to enable/disable the new extended opcode formats; meant as a
     * temporary measure until VM support for the salient opcodes is
     * added. TODO: Remove this declaration when the VM can deal.
     */
    public static boolean ALLOW_EXTENDED_OPCODES = true;

    /**
     * Returns the string form, suitable for inclusion in a listing
     * dump, of the given instruction. The instruction must be of this
     * instance's format for proper operation.
     *
     * @param insn {@code non-null;} the instruction
     * @param noteIndices whether to include an explicit notation of
     * constant pool indices
     * @return {@code non-null;} the string form
     */
    public final String listingString(DalvInsn insn, boolean noteIndices) {
        String op = insn.getOpcode().getName();
        String arg = insnArgString(insn);
        String comment = insnCommentString(insn, noteIndices);
        StringBuilder sb = new StringBuilder(100);

        sb.append(op);

        if (arg.length() != 0) {
            sb.append(' ');
            sb.append(arg);
        }

        if (comment.length() != 0) {
            sb.append(" // ");
            sb.append(comment);
        }

        return sb.toString();
    }

    /**
     * Returns the string form of the arguments to the given instruction.
     * The instruction must be of this instance's format. If the instruction
     * has no arguments, then the result should be {@code ""}, not
     * {@code null}.
     *
     * 

Subclasses must override this method.

* * @param insn {@code non-null;} the instruction * @return {@code non-null;} the string form */ public abstract String insnArgString(DalvInsn insn); /** * Returns the associated comment for the given instruction, if any. * The instruction must be of this instance's format. If the instruction * has no comment, then the result should be {@code ""}, not * {@code null}. * *

Subclasses must override this method.

* * @param insn {@code non-null;} the instruction * @param noteIndices whether to include an explicit notation of * constant pool indices * @return {@code non-null;} the string form */ public abstract String insnCommentString(DalvInsn insn, boolean noteIndices); /** * Gets the code size of instructions that use this format. The * size is a number of 16-bit code units, not bytes. This should * throw an exception if this format is of variable size. * * @return {@code >= 0;} the instruction length in 16-bit code units */ public abstract int codeSize(); /** * Returns whether or not the given instruction's arguments will * fit in this instance's format. This includes such things as * counting register arguments, checking register ranges, and * making sure that additional arguments are of appropriate types * and are in-range. If this format has a branch target but the * instruction's branch offset is unknown, this method will simply * not check the offset. * *

Subclasses must override this method.

* * @param insn {@code non-null;} the instruction to check * @return {@code true} iff the instruction's arguments are * appropriate for this instance, or {@code false} if not */ public abstract boolean isCompatible(DalvInsn insn); /** * Returns which of a given instruction's registers will fit in * this instance's format. * *

The default implementation of this method always returns * an empty BitSet. Subclasses must override this method if they * have registers.

* * @param insn {@code non-null;} the instruction to check * @return {@code non-null;} a BitSet flagging registers in the * register list that are compatible to this format */ public BitSet compatibleRegs(DalvInsn insn) { return new BitSet(); } /** * Returns whether or not the given instruction's branch offset will * fit in this instance's format. This always returns {@code false} * for formats that don't include a branch offset. * *

The default implementation of this method always returns * {@code false}. Subclasses must override this method if they * include branch offsets.

* * @param insn {@code non-null;} the instruction to check * @return {@code true} iff the instruction's branch offset is * appropriate for this instance, or {@code false} if not */ public boolean branchFits(TargetInsn insn) { return false; } /** * Writes the code units for the given instruction to the given * output destination. The instruction must be of this instance's format. * *

Subclasses must override this method.

* * @param out {@code non-null;} the output destination to write to * @param insn {@code non-null;} the instruction to write */ public abstract void writeTo(AnnotatedOutput out, DalvInsn insn); /** * Helper method to return a register list string. * * @param list {@code non-null;} the list of registers * @return {@code non-null;} the string form */ protected static String regListString(RegisterSpecList list) { int sz = list.size(); StringBuffer sb = new StringBuffer(sz * 5 + 2); sb.append('{'); for (int i = 0; i < sz; i++) { if (i != 0) { sb.append(", "); } sb.append(list.get(i).regString()); } sb.append('}'); return sb.toString(); } /** * Helper method to return a register range string. * * @param list {@code non-null;} the list of registers (which must be * sequential) * @return {@code non-null;} the string form */ protected static String regRangeString(RegisterSpecList list) { int size = list.size(); StringBuilder sb = new StringBuilder(30); sb.append("{"); switch (size) { case 0: { // Nothing to do. break; } case 1: { sb.append(list.get(0).regString()); break; } default: { RegisterSpec lastReg = list.get(size - 1); if (lastReg.getCategory() == 2) { /* * Add one to properly represent a list-final * category-2 register. */ lastReg = lastReg.withOffset(1); } sb.append(list.get(0).regString()); sb.append(".."); sb.append(lastReg.regString()); } } sb.append("}"); return sb.toString(); } /** * Helper method to return a literal bits argument string. * * @param value the value * @return {@code non-null;} the string form */ protected static String literalBitsString(CstLiteralBits value) { StringBuffer sb = new StringBuffer(100); sb.append('#'); if (value instanceof CstKnownNull) { sb.append("null"); } else { sb.append(value.typeName()); sb.append(' '); sb.append(value.toHuman()); } return sb.toString(); } /** * Helper method to return a literal bits comment string. * * @param value the value * @param width the width of the constant, in bits (used for displaying * the uninterpreted bits; one of: {@code 4 8 16 32 64} * @return {@code non-null;} the comment */ protected static String literalBitsComment(CstLiteralBits value, int width) { StringBuffer sb = new StringBuffer(20); sb.append("#"); long bits; if (value instanceof CstLiteral64) { bits = ((CstLiteral64) value).getLongBits(); } else { bits = value.getIntBits(); } switch (width) { case 4: sb.append(Hex.uNibble((int) bits)); break; case 8: sb.append(Hex.u1((int) bits)); break; case 16: sb.append(Hex.u2((int) bits)); break; case 32: sb.append(Hex.u4((int) bits)); break; case 64: sb.append(Hex.u8(bits)); break; default: { throw new RuntimeException("shouldn't happen"); } } return sb.toString(); } /** * Helper method to return a branch address string. * * @param insn {@code non-null;} the instruction in question * @return {@code non-null;} the string form of the instruction's * branch target */ protected static String branchString(DalvInsn insn) { TargetInsn ti = (TargetInsn) insn; int address = ti.getTargetAddress(); return (address == (char) address) ? Hex.u2(address) : Hex.u4(address); } /** * Helper method to return the comment for a branch. * * @param insn {@code non-null;} the instruction in question * @return {@code non-null;} the comment */ protected static String branchComment(DalvInsn insn) { TargetInsn ti = (TargetInsn) insn; int offset = ti.getTargetOffset(); return (offset == (short) offset) ? Hex.s2(offset) : Hex.s4(offset); } /** * Helper method to return the constant string for a {@link CstInsn} * in human form. * * @param insn {@code non-null;} a constant-bearing instruction * @return {@code non-null;} the human string form of the contained * constant */ protected static String cstString(DalvInsn insn) { CstInsn ci = (CstInsn) insn; Constant cst = ci.getConstant(); return cst instanceof CstString ? ((CstString) cst).toQuoted() : cst.toHuman(); } /** * Helper method to return an instruction comment for a constant. * * @param insn {@code non-null;} a constant-bearing instruction * @return {@code non-null;} comment string representing the constant */ protected static String cstComment(DalvInsn insn) { CstInsn ci = (CstInsn) insn; if (! ci.hasIndex()) { return ""; } StringBuilder sb = new StringBuilder(20); int index = ci.getIndex(); sb.append(ci.getConstant().typeName()); sb.append('@'); if (index < 65536) { sb.append(Hex.u2(index)); } else { sb.append(Hex.u4(index)); } return sb.toString(); } /** * Helper method to determine if a signed int value fits in a nibble. * * @param value the value in question * @return {@code true} iff it's in the range -8..+7 */ protected static boolean signedFitsInNibble(int value) { return (value >= -8) && (value <= 7); } /** * Helper method to determine if an unsigned int value fits in a nibble. * * @param value the value in question * @return {@code true} iff it's in the range 0..0xf */ protected static boolean unsignedFitsInNibble(int value) { return value == (value & 0xf); } /** * Helper method to determine if a signed int value fits in a byte. * * @param value the value in question * @return {@code true} iff it's in the range -0x80..+0x7f */ protected static boolean signedFitsInByte(int value) { return (byte) value == value; } /** * Helper method to determine if an unsigned int value fits in a byte. * * @param value the value in question * @return {@code true} iff it's in the range 0..0xff */ protected static boolean unsignedFitsInByte(int value) { return value == (value & 0xff); } /** * Helper method to determine if a signed int value fits in a short. * * @param value the value in question * @return {@code true} iff it's in the range -0x8000..+0x7fff */ protected static boolean signedFitsInShort(int value) { return (short) value == value; } /** * Helper method to determine if an unsigned int value fits in a short. * * @param value the value in question * @return {@code true} iff it's in the range 0..0xffff */ protected static boolean unsignedFitsInShort(int value) { return value == (value & 0xffff); } /** * Helper method to determine if a list of registers are sequential, * including degenerate cases for empty or single-element lists. * * @param list {@code non-null;} the list of registers * @return {@code true} iff the list is sequentially ordered */ protected static boolean isRegListSequential(RegisterSpecList list) { int sz = list.size(); if (sz < 2) { return true; } int first = list.get(0).getReg(); int next = first; for (int i = 0; i < sz; i++) { RegisterSpec one = list.get(i); if (one.getReg() != next) { return false; } next += one.getCategory(); } return true; } /** * Helper method to extract the callout-argument index from an * appropriate instruction. * * @param insn {@code non-null;} the instruction * @return {@code >= 0;} the callout argument index */ protected static int argIndex(DalvInsn insn) { int arg = ((CstInteger) ((CstInsn) insn).getConstant()).getValue(); if (arg < 0) { throw new IllegalArgumentException("bogus insn"); } return arg; } /** * Helper method to combine an opcode and a second byte of data into * the appropriate form for emitting into a code buffer. * * @param insn {@code non-null;} the instruction containing the opcode * @param arg {@code 0..255;} arbitrary other byte value * @return combined value */ protected static short opcodeUnit(DalvInsn insn, int arg) { if ((arg & 0xff) != arg) { throw new IllegalArgumentException("arg out of range 0..255"); } int opcode = insn.getOpcode().getOpcode(); if ((opcode & 0xff) != opcode) { throw new IllegalArgumentException("opcode out of range 0..255"); } return (short) (opcode | (arg << 8)); } /** * Helper method to get an extended (16-bit) opcode out of an * instruction, returning it as a code unit. The opcode * must be an extended opcode. * * @param insn {@code non-null;} the instruction containing the * extended opcode * @return the opcode as a code unit */ protected static short opcodeUnit(DalvInsn insn) { int opcode = insn.getOpcode().getOpcode(); if ((opcode < 0x100) || (opcode > 0xffff)) { throw new IllegalArgumentException("opcode out of range 0..65535"); } return (short) opcode; } /** * Helper method to combine two bytes into a code unit. * * @param low {@code 0..255;} low byte * @param high {@code 0..255;} high byte * @return combined value */ protected static short codeUnit(int low, int high) { if ((low & 0xff) != low) { throw new IllegalArgumentException("low out of range 0..255"); } if ((high & 0xff) != high) { throw new IllegalArgumentException("high out of range 0..255"); } return (short) (low | (high << 8)); } /** * Helper method to combine four nibbles into a code unit. * * @param n0 {@code 0..15;} low nibble * @param n1 {@code 0..15;} medium-low nibble * @param n2 {@code 0..15;} medium-high nibble * @param n3 {@code 0..15;} high nibble * @return combined value */ protected static short codeUnit(int n0, int n1, int n2, int n3) { if ((n0 & 0xf) != n0) { throw new IllegalArgumentException("n0 out of range 0..15"); } if ((n1 & 0xf) != n1) { throw new IllegalArgumentException("n1 out of range 0..15"); } if ((n2 & 0xf) != n2) { throw new IllegalArgumentException("n2 out of range 0..15"); } if ((n3 & 0xf) != n3) { throw new IllegalArgumentException("n3 out of range 0..15"); } return (short) (n0 | (n1 << 4) | (n2 << 8) | (n3 << 12)); } /** * Helper method to combine two nibbles into a byte. * * @param low {@code 0..15;} low nibble * @param high {@code 0..15;} high nibble * @return {@code 0..255;} combined value */ protected static int makeByte(int low, int high) { if ((low & 0xf) != low) { throw new IllegalArgumentException("low out of range 0..15"); } if ((high & 0xf) != high) { throw new IllegalArgumentException("high out of range 0..15"); } return low | (high << 4); } /** * Writes one code unit to the given output destination. * * @param out {@code non-null;} where to write to * @param c0 code unit to write */ protected static void write(AnnotatedOutput out, short c0) { out.writeShort(c0); } /** * Writes two code units to the given output destination. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1 code unit to write */ protected static void write(AnnotatedOutput out, short c0, short c1) { out.writeShort(c0); out.writeShort(c1); } /** * Writes three code units to the given output destination. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1 code unit to write * @param c2 code unit to write */ protected static void write(AnnotatedOutput out, short c0, short c1, short c2) { out.writeShort(c0); out.writeShort(c1); out.writeShort(c2); } /** * Writes four code units to the given output destination. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1 code unit to write * @param c2 code unit to write * @param c3 code unit to write */ protected static void write(AnnotatedOutput out, short c0, short c1, short c2, short c3) { out.writeShort(c0); out.writeShort(c1); out.writeShort(c2); out.writeShort(c3); } /** * Writes five code units to the given output destination. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1 code unit to write * @param c2 code unit to write * @param c3 code unit to write * @param c4 code unit to write */ protected static void write(AnnotatedOutput out, short c0, short c1, short c2, short c3, short c4) { out.writeShort(c0); out.writeShort(c1); out.writeShort(c2); out.writeShort(c3); out.writeShort(c4); } /** * Writes three code units to the given output destination, where the * second and third are represented as single int and emitted * in little-endian order. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1c2 code unit pair to write */ protected static void write(AnnotatedOutput out, short c0, int c1c2) { write(out, c0, (short) c1c2, (short) (c1c2 >> 16)); } /** * Writes four code units to the given output destination, where the * second and third are represented as single int and emitted * in little-endian order. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1c2 code unit pair to write * @param c3 code unit to write */ protected static void write(AnnotatedOutput out, short c0, int c1c2, short c3) { write(out, c0, (short) c1c2, (short) (c1c2 >> 16), c3); } /** * Writes five code units to the given output destination, where the * second and third are represented as single int and emitted * in little-endian order. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1c2 code unit pair to write * @param c3 code unit to write * @param c4 code unit to write */ protected static void write(AnnotatedOutput out, short c0, int c1c2, short c3, short c4) { write(out, c0, (short) c1c2, (short) (c1c2 >> 16), c3, c4); } /** * Writes five code units to the given output destination, where the * second through fifth are represented as single long * and emitted in little-endian order. * * @param out {@code non-null;} where to write to * @param c0 code unit to write * @param c1c2c3c4 code unit quad to write */ protected static void write(AnnotatedOutput out, short c0, long c1c2c3c4) { write(out, c0, (short) c1c2c3c4, (short) (c1c2c3c4 >> 16), (short) (c1c2c3c4 >> 32), (short) (c1c2c3c4 >> 48)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy