All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.jidesoft.swing.ShadowFactory Maven / Gradle / Ivy

/*
 * @(#)ShadowFactory.java 9/14/2011
 *
 * Copyright 2002 - 2011 JIDE Software Inc. All rights reserved.
 */

package com.jidesoft.swing;

import java.awt.*;
import java.awt.image.*;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;
import java.util.HashMap;

/**
 * 

A shadow factory generates a drop shadow for any given picture, respecting the transparency channel if present. * The resulting picture contains the shadow only and to create a drop shadow effect you will need to stack the original * picture and the shadow generated by the factory.

Shadow Properties

A shadow is defined by three * properties:

  • size: The size, in pixels, of the shadow. This property also defines the fuzzyness.
  • *
  • opacity: The opacity, between 0.0 and 1.0, of the shadow.
  • color: The color of the shadow. * Shadows are not meant to be black only.
You can set these properties using the provided mutaters or the * appropriate constructor. Here are two ways of creating a green shadow of size 10 and with an opacity of 50%: *
 * ShadowFactory factory = new ShadowFactory(10, 0.5f, Color.GREEN);
 * // ..
 * factory = new ShadowFactory();
 * factory.setSize(10);
 * factory.setOpacity(0.5f);
 * factory.setColor(Color.GREEN);
 * 
* The default constructor provides the following default values:
  • size: 5 pixels
  • *
  • opacity: 50%
  • color: Black

Shadow Quality

The factory provides * two shadow generation algorithms: fast quality blur and high quality blur. You can select your * preferred algorithm by setting the appropriate rendering hint: *

 * ShadowFactory factory = new ShadowFactory();
 * factory.setRenderingHint(ShadowFactory.KEY_BLUR_QUALITY,
 *                          ShadowFactory.VALUE_BLUR_QUALITY_HIGH);
 * 
* The default rendering algorithm is VALUE_BLUR_QUALITY_FAST.

The current implementation should * provide the same quality with both algorithms but performances are guaranteed to be better (about 30 times faster) * with the fast quality blur.

Generating a Shadow

A shadow is generated as a * BufferedImage from another BufferedImage. Once the factory is set up, you must call {@link * #createShadow} to actually generate the shadow: *

 * ShadowFactory factory = new ShadowFactory();
 * // factory setup
 * BufferedImage shadow = factory.createShadow(bufferedImage);
 * 
* The resulting image is of type BufferedImage.TYPE_INT_ARGB. Both dimensions of this image are larger * than original image's:
  • new width = original width + 2 * shadow size
  • new height = original height + * 2 * shadow size
This must be taken into account when you need to create a drop shadow effect.

*

Properties Changes

This factory allows to register property change listeners with {@link * #addPropertyChangeListener}. Listening to properties changes is very useful when you embed the factory in a graphical * component and give the API user the ability to access the factory. By listening to properties changes, you can easily * repaint the component when needed.

Threading Issues

ShadowFactory is not guaranteed to * be thread-safe.

* * @author Romain Guy * @author Sebastien Petrucci */ public class ShadowFactory implements ShadowRenderer { /** *

Key for the blur quality rendering hint.

*/ public static final String KEY_BLUR_QUALITY = "blur_quality"; /** *

Selects the fast rendering algorithm. This is the default rendering hint for * KEY_BLUR_QUALITY.

*/ public static final String VALUE_BLUR_QUALITY_FAST = "fast"; /** *

Selects the high quality rendering algorithm. With current implementation, This algorithm does not guarantee a * better rendering quality and should not be used.

*/ public static final String VALUE_BLUR_QUALITY_HIGH = "high"; /** *

Identifies a change to the size used to render the shadow.

When the property change event is fired, the * old value and the new value are provided as Integer instances.

*/ public static final String SIZE_CHANGED_PROPERTY = "shadow_size"; /** *

Identifies a change to the opacity used to render the shadow.

When the property change event is fired, * the old value and the new value are provided as Float instances.

*/ public static final String OPACITY_CHANGED_PROPERTY = "shadow_opacity"; /** *

Identifies a change to the color used to render the shadow.

*/ public static final String COLOR_CHANGED_PROPERTY = "shadow_color"; // size of the shadow in pixels (defines the fuzziness) private int size = 5; // opacity of the shadow private float opacity = 0.5f; // color of the shadow private Color color = Color.BLACK; // rendering hints map private HashMap hints; // notifies listeners of properties changes private PropertyChangeSupport changeSupport; /** *

Creates a default good looking shadow generator. The default shadow factory provides the following default * values:

  • size: 5 pixels
  • opacity: 50%
  • color: Black
  • *
  • rendering quality: VALUE_BLUR_QUALITY_FAST

These properties provide a regular, good * looking shadow.

*/ public ShadowFactory() { this(5, 0.5f, Color.BLACK); } /** *

A shadow factory needs three properties to generate shadows. These properties are:

  • size: * The size, in pixels, of the shadow. This property also defines the fuzzyness.
  • opacity: The * opacity, between 0.0 and 1.0, of the shadow.
  • color: The color of the shadow. Shadows are not * meant to be black only.

Besides these properties you can set rendering hints to control the * rendering process. The default rendering hints let the factory use the fastest shadow generation algorithm.

* * @param size The size of the shadow in pixels. Defines the fuzziness. * @param opacity The opacity of the shadow. * @param color The color of the shadow. * * @see #setRenderingHint(Object, Object) */ public ShadowFactory(final int size, final float opacity, final Color color) { hints = new HashMap(); hints.put(KEY_BLUR_QUALITY, VALUE_BLUR_QUALITY_FAST); changeSupport = new PropertyChangeSupport(this); setSize(size); setOpacity(opacity); setColor(color); } /** *

Add a PropertyChangeListener to the listener list. The listener is registered for all properties. The same * listener object may be added more than once, and will be called as many times as it is added. If * listener is null, no exception is thrown and no action is taken.

* * @param listener the PropertyChangeListener to be added */ public void addPropertyChangeListener(PropertyChangeListener listener) { changeSupport.addPropertyChangeListener(listener); } /** *

Remove a PropertyChangeListener from the listener list. This removes a PropertyChangeListener that was * registered for all properties. If listener was added more than once to the same event source, it * will be notified one less time after being removed. If listener is null, or was never added, no * exception is thrown and no action is taken.

* * @param listener */ public void removePropertyChangeListener(PropertyChangeListener listener) { changeSupport.removePropertyChangeListener(listener); } /** *

Maps the specified rendering hint key to the specified value in this * SahdowFactory object.

* * @param key The rendering hint key * @param value The rendering hint value */ public void setRenderingHint(final Object key, final Object value) { hints.put(key, value); } /** *

Gets the color used by the factory to generate shadows.

* * @return this factory's shadow color */ public Color getColor() { return color; } /** *

Sets the color used by the factory to generate shadows.

Consecutive calls to {@link #createShadow} will * all use this color until it is set again.

If the color provided is null, the previous color will be * retained.

* * @param shadowColor the generated shadows color */ public void setColor(final Color shadowColor) { if (shadowColor != null) { Color oldColor = this.color; this.color = shadowColor; changeSupport.firePropertyChange(COLOR_CHANGED_PROPERTY, oldColor, this.color); } } /** *

Gets the opacity used by the factory to generate shadows.

The opacity is comprised between 0.0f and * 1.0f; 0.0f being fully transparent and 1.0f fully opaque.

* * @return this factory's shadow opacity */ public float getOpacity() { return opacity; } /** *

Sets the opacity used by the factory to generate shadows.

Consecutive calls to {@link #createShadow} * will all use this color until it is set again.

The opacity is comprised between 0.0f and 1.0f; 0.0f being * fully transparent and 1.0f fully opaque. If you provide a value out of these boundaries, it will be restrained to * the closest boundary.

* * @param shadowOpacity the generated shadows opacity */ public void setOpacity(final float shadowOpacity) { float oldOpacity = this.opacity; if (shadowOpacity < 0.0) { this.opacity = 0.0f; } else if (shadowOpacity > 1.0f) { this.opacity = 1.0f; } else { this.opacity = shadowOpacity; } changeSupport.firePropertyChange(OPACITY_CHANGED_PROPERTY, oldOpacity, this.opacity); } /** *

Gets the size in pixel used by the factory to generate shadows.

* * @return this factory's shadow size */ public int getSize() { return size; } /** *

Sets the size, in pixels, used by the factory to generate shadows.

The size defines the blur radius * applied to the shadow to create the fuzziness.

There is virtually no limit to the size but it has an * impact on shadow generation performances. The greater this value, the longer it will take to generate the shadow. * Remember the generated shadow image dimensions are computed as follow:

  • new width = original width + 2 * * shadow size
  • new height = original height + 2 * shadow size
The size cannot be negative. If * you provide a negative value, the size will be 0 instead.

* * @param shadowSize the generated shadows size in pixels (fuzziness) */ public void setSize(final int shadowSize) { int oldSize = this.size; if (shadowSize < 0) { this.size = 0; } else { this.size = shadowSize; } changeSupport.firePropertyChange(SIZE_CHANGED_PROPERTY, new Integer(oldSize), new Integer(this.size)); } /** *

Generates the shadow for a given picture and the current properties of the factory.

The generated * shadow image dimensions are computed as follow:

  • new width = original width + 2 * shadow size
  • *
  • new height = original height + 2 * shadow size

The time taken by a call to this method * depends on the size of the shadow, the larger the longer it takes, and on the selected rendering algorithm.

* * @param image the picture from which the shadow must be cast * * @return the picture containing the shadow of image */ public BufferedImage createShadow(final BufferedImage image) { if (hints.get(KEY_BLUR_QUALITY) == VALUE_BLUR_QUALITY_HIGH) { // the high quality algorithm is a 3-pass algorithm // it goes through all the pixels of the original picture at least // three times to generate the shadow // it is easy to understand but very slow BufferedImage subject = prepareImage(image); BufferedImage shadow = new BufferedImage(subject.getWidth(), subject.getHeight(), BufferedImage.TYPE_INT_ARGB); BufferedImage shadowMask = createShadowMask(subject); getLinearBlurOp(size).filter(shadowMask, shadow); return shadow; } // call the fast rendering algorithm return createShadowFast(image); } // prepares the picture for the high quality rendering algorithm private BufferedImage prepareImage(final BufferedImage image) { BufferedImage subject = new BufferedImage(image.getWidth() + size * 2, image.getHeight() + size * 2, BufferedImage.TYPE_INT_ARGB); Graphics2D g2 = subject.createGraphics(); g2.drawImage(image, null, size, size); g2.dispose(); return subject; } // fast rendering algorithm // basically applies duplicates the picture and applies a size*size kernel // in only one pass. // the kernel is simulated by an horizontal and a vertical pass // implemented by Sebastien Petrucci private BufferedImage createShadowFast(final BufferedImage src) { int shadowSize = this.size; int srcWidth = src.getWidth(); int srcHeight = src.getHeight(); int dstWidth = srcWidth + size; int dstHeight = srcHeight + size; int left = (shadowSize - 1) >> 1; int right = shadowSize - left; int yStop = dstHeight - right; BufferedImage dst = new BufferedImage(dstWidth, dstHeight, BufferedImage.TYPE_INT_ARGB); int shadowRgb = color.getRGB() & 0x00FFFFFF; int[] aHistory = new int[shadowSize]; int historyIdx; int aSum; ColorModel srcColorModel = src.getColorModel(); WritableRaster srcRaster = src.getRaster(); int[] dstBuffer = ((DataBufferInt) dst.getRaster().getDataBuffer()).getData(); int lastPixelOffset = right * dstWidth; float hSumDivider = 1.0f / size; float vSumDivider = opacity / size; // horizontal pass : extract the alpha mask from the source picture and // blur it into the destination picture for (int srcY = 0, dstOffset = left * dstWidth; srcY < srcHeight; srcY++) { // first pixels are empty for (historyIdx = 0; historyIdx < shadowSize; ) { aHistory[historyIdx++] = 0; } aSum = 0; historyIdx = 0; // compute the blur average with pixels from the source image for (int srcX = 0; srcX < srcWidth; srcX++) { int a = (int) (aSum * hSumDivider); // calculate alpha value dstBuffer[dstOffset++] = a << 24; // store the alpha value only // the shadow color will be added in the next pass aSum -= aHistory[historyIdx]; // subtract the oldest pixel from the sum // extract the new pixel ... a = srcColorModel.getAlpha(srcRaster.getDataElements(srcX, srcY, null)); aHistory[historyIdx] = a; // ... and store its value into history aSum += a; // ... and add its value to the sum if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } // blur the end of the row - no new pixels to grab for (int i = 0; i < shadowSize; i++) { int a = (int) (aSum * hSumDivider); dstBuffer[dstOffset++] = a << 24; // subtract the oldest pixel from the sum ... and nothing new to add ! aSum -= aHistory[historyIdx]; if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } } // vertical pass for (int x = 0, bufferOffset = 0; x < dstWidth; x++, bufferOffset = x) { aSum = 0; // first pixels are empty for (historyIdx = 0; historyIdx < left; ) { aHistory[historyIdx++] = 0; } // and then they come from the dstBuffer for (int y = 0; y < right; y++, bufferOffset += dstWidth) { int a = dstBuffer[bufferOffset] >>> 24; // extract alpha aHistory[historyIdx++] = a; // store into history aSum += a; // and add to sum } bufferOffset = x; historyIdx = 0; // compute the blur average with pixels from the previous pass for (int y = 0; y < yStop; y++, bufferOffset += dstWidth) { int a = (int) (aSum * vSumDivider); // calculate alpha value dstBuffer[bufferOffset] = a << 24 | shadowRgb; // store alpha value + shadow color aSum -= aHistory[historyIdx]; // subtract the oldest pixel from the sum a = dstBuffer[bufferOffset + lastPixelOffset] >>> 24; // extract the new pixel ... aHistory[historyIdx] = a; // ... and store its value into history aSum += a; // ... and add its value to the sum if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } // blur the end of the column - no pixels to grab anymore for (int y = yStop; y < dstHeight; y++, bufferOffset += dstWidth) { int a = (int) (aSum * vSumDivider); dstBuffer[bufferOffset] = a << 24 | shadowRgb; aSum -= aHistory[historyIdx]; // subtract the oldest pixel from the sum if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } } return dst; } // creates the shadow mask for the original picture // it colorize all the pixels with the shadow color according to their // original transparency private BufferedImage createShadowMask(final BufferedImage image) { BufferedImage mask = new BufferedImage(image.getWidth(), image.getHeight(), BufferedImage.TYPE_INT_ARGB); Graphics2D g2d = mask.createGraphics(); g2d.drawImage(image, 0, 0, null); g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_IN, opacity)); g2d.setColor(color); g2d.fillRect(0, 0, image.getWidth(), image.getHeight()); g2d.dispose(); return mask; } // creates a blur convolve operation by generating a kernel of // dimensions (size, size). private ConvolveOp getLinearBlurOp(final int size) { float[] data = new float[size * size]; float value = 1.0f / (float) (size * size); for (int i = 0; i < data.length; i++) { data[i] = value; } return new ConvolveOp(new Kernel(size, size, data)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy