com.jidesoft.utils.BigDecimalMathUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jide-oss Show documentation
Show all versions of jide-oss Show documentation
JIDE Common Layer (Professional Swing Components)
package com.jidesoft.utils;
import com.jidesoft.range.BigDecimalRange;
import com.jidesoft.range.Range;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;
import java.util.TreeSet;
/**
* A collection of several util methods related to BigDecimal. We only used it in BigDecimalSummaryCalculator in JIDE
* Pivot Grid. but this class will be reserved as a place holder for methods related to BigDecimal.
*/
public final class BigDecimalMathUtils {
public static final BigDecimal TWO = BigDecimal.valueOf(2);
protected BigDecimalMathUtils() {
}
/**
* Returns the sum number in the numbers list.
*
* @param numbers the numbers to calculate the sum.
* @return the sum of the numbers.
*/
public static BigDecimal sum(List numbers) {
BigDecimal sum = new BigDecimal(0);
for (BigDecimal bigDecimal : numbers) {
sum = sum.add(bigDecimal);
}
return sum;
}
/**
* Returns the mean number in the numbers list.
*
* @param numbers the numbers to calculate the mean.
* @param context the MathContext.
* @return the mean of the numbers.
*/
public static BigDecimal mean(List numbers, MathContext context) {
BigDecimal sum = sum(numbers);
return sum.divide(new BigDecimal(numbers.size()), context);
}
/**
* Returns the min number in the numbers list.
*
* @param numbers the numbers to calculate the min.
* @return the min number in the numbers list.
*/
public static BigDecimal min(List numbers) {
return new TreeSet(numbers).first();
}
/**
* Returns the max number in the numbers list.
*
* @param numbers the numbers to calculate the max.
* @return the max number in the numbers list.
*/
public static BigDecimal max(List numbers) {
return new TreeSet(numbers).last();
}
/**
* Returns the max number in the numbers list.
*
* @param numbers the numbers to calculate the max.
* @return the max number in the numbers list.
*/
public static Range range(List numbers) {
TreeSet decimals = new TreeSet(numbers);
return new BigDecimalRange(decimals.first(), decimals.last());
}
/**
* Returns the standard deviation of the numbers.
*
* Double.NaN is returned if the numbers list is empty.
*
* @param numbers the numbers to calculate the standard deviation.
* @param biasCorrected true if variance is calculated by dividing by n - 1. False if by n. stddev is a sqrt of the
* variance.
* @param context the MathContext
* @return the standard deviation
*/
public static BigDecimal stddev(List numbers, boolean biasCorrected, MathContext context) {
BigDecimal stddev;
int n = numbers.size();
if (n > 0) {
if (n > 1) {
stddev = sqrt(var(numbers, biasCorrected, context));
}
else {
stddev = BigDecimal.ZERO;
}
}
else {
stddev = BigDecimal.valueOf(Double.NaN);
}
return stddev;
}
/**
* Computes the variance of the available values. By default, the unbiased "sample variance" definitional formula is
* used: variance = sum((x_i - mean)^2) / (n - 1)
*
* The "population variance" ( sum((x_i - mean)^2) / n ) can also be computed using this statistic. The
* biasCorrected
property determines whether the "population" or "sample" value is returned by the
* evaluate
and getResult
methods. To compute population variances, set this property to
* false
.
*
* @param numbers the numbers to calculate the variance.
* @param biasCorrected true if variance is calculated by dividing by n - 1. False if by n.
* @param context the MathContext
* @return the variance of the numbers.
*/
public static BigDecimal var(List numbers, boolean biasCorrected, MathContext context) {
int n = numbers.size();
if (n == 0) {
return BigDecimal.valueOf(Double.NaN);
}
else if (n == 1) {
return BigDecimal.ZERO;
}
BigDecimal mean = mean(numbers, context);
List squares = new ArrayList();
for (BigDecimal number : numbers) {
BigDecimal XminMean = number.subtract(mean);
squares.add(XminMean.pow(2, context));
}
BigDecimal sum = sum(squares);
return sum.divide(new BigDecimal(biasCorrected ? numbers.size() - 1 : numbers.size()), context);
}
/**
* Calcualtes the square root of the number.
*
* @param number the input number.
* @return the square root of the input number.
*/
public static BigDecimal sqrt(BigDecimal number) {
int digits; // final precision
BigDecimal numberToBeSquareRooted;
BigDecimal iteration1;
BigDecimal iteration2;
BigDecimal temp1 = null;
BigDecimal temp2 = null; // temp values
int extraPrecision = number.precision();
MathContext mc = new MathContext(extraPrecision, RoundingMode.HALF_UP);
numberToBeSquareRooted = number; // bd global variable
double num = numberToBeSquareRooted.doubleValue(); // bd to double
if (mc.getPrecision() == 0)
throw new IllegalArgumentException("\nRoots need a MathContext precision > 0");
if (num < 0.)
throw new ArithmeticException("\nCannot calculate the square root of a negative number");
if (num == 0.)
return number.round(mc); // return sqrt(0) immediately
if (mc.getPrecision() < 50) // small precision is buggy..
extraPrecision += 10; // ..make more precise
int startPrecision = 1; // default first precision
/* create the initial values for the iteration procedure:
* x0: x ~ sqrt(d)
* v0: v = 1/(2*x)
*/
if (num == Double.POSITIVE_INFINITY) // d > 1.7E308
{
BigInteger bi = numberToBeSquareRooted.unscaledValue();
int biLen = bi.bitLength();
int biSqrtLen = biLen / 2; // floors it too
bi = bi.shiftRight(biSqrtLen); // bad guess sqrt(d)
iteration1 = new BigDecimal(bi); // x ~ sqrt(d)
MathContext mm = new MathContext(5, RoundingMode.HALF_DOWN); // minimal precision
extraPrecision += 10; // make up for it later
iteration2 = BigDecimal.ONE.divide(TWO.multiply(iteration1, mm), mm); // v = 1/(2*x)
}
else // d < 1.7E10^308 (the usual numbers)
{
double s = Math.sqrt(num);
iteration1 = new BigDecimal(((Double) s).toString()); // x = sqrt(d)
iteration2 = new BigDecimal(((Double) (1. / 2. / s)).toString()); // v = 1/2/x
// works because Double.MIN_VALUE * Double.MAX_VALUE ~ 9E-16, so: v > 0
startPrecision = 64;
}
digits = mc.getPrecision() + extraPrecision; // global limit for procedure
// create initial MathContext(precision, RoundingMode)
MathContext n = new MathContext(startPrecision, mc.getRoundingMode());
return sqrtProcedure(n, digits, numberToBeSquareRooted, iteration1, iteration2, temp1, temp2); // return square root using argument precision
}
/**
* Square root by coupled Newton iteration, sqrtProcedure() is the iteration part I adopted the Algorithm from the
* book "Pi-unleashed", so now it looks more natural I give sparse math comments from the book, it assumes argument
* mc precision >= 1
*
* @param mc
* @param digits
* @param numberToBeSquareRooted
* @param iteration1
* @param iteration2
* @param temp1
* @param temp2
* @return
*/
@SuppressWarnings({"JavaDoc"})
private static BigDecimal sqrtProcedure(MathContext mc, int digits, BigDecimal numberToBeSquareRooted, BigDecimal iteration1,
BigDecimal iteration2, BigDecimal temp1, BigDecimal temp2) {
// next v // g = 1 - 2*x*v
temp1 = BigDecimal.ONE.subtract(TWO.multiply(iteration1, mc).multiply(iteration2, mc), mc);
iteration2 = iteration2.add(temp1.multiply(iteration2, mc), mc); // v += g*v ~ 1/2/sqrt(d)
// next x
temp2 = numberToBeSquareRooted.subtract(iteration1.multiply(iteration1, mc), mc); // e = d - x^2
iteration1 = iteration1.add(temp2.multiply(iteration2, mc), mc); // x += e*v ~ sqrt(d)
// increase precision
int m = mc.getPrecision();
if (m < 2)
m++;
else
m = m * 2 - 1; // next Newton iteration supplies so many exact digits
if (m < 2 * digits) // digits limit not yet reached?
{
mc = new MathContext(m, mc.getRoundingMode()); // apply new precision
sqrtProcedure(mc, digits, numberToBeSquareRooted, iteration1, iteration2, temp1, temp2); // next iteration
}
return iteration1; // returns the iterated square roots
}
public static void main(String[] args) {
System.out.println(sqrt(new BigDecimal("25029.33333")));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy