Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2023 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.ml.ai
import ai.onnxruntime.OnnxTensor
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, OnnxSession, TensorResources}
import com.johnsnowlabs.ml.tensorflow.TensorflowWrapper
import com.johnsnowlabs.ml.util.LinAlg.{argmax, softmax}
import com.johnsnowlabs.ml.util.{ONNX, TensorFlow}
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.annotators.common.Sentence
import com.johnsnowlabs.nlp.annotators.cv.feature_extractor.Preprocessor
import com.johnsnowlabs.nlp.annotators.cv.util.io.ImageIOUtils
import com.johnsnowlabs.nlp.annotators.cv.util.transform.ImageResizeUtils
import com.johnsnowlabs.nlp.annotators.tokenizer.bpe.CLIPTokenizer
import scala.jdk.CollectionConverters.mapAsJavaMapConverter
private[johnsnowlabs] class CLIP(
val tensorflowWrapper: Option[TensorflowWrapper],
val onnxWrapper: Option[OnnxWrapper],
configProtoBytes: Option[Array[Byte]] = None,
tokenizer: CLIPTokenizer,
preprocessor: Preprocessor)
extends Serializable {
val detectedEngine: String =
if (tensorflowWrapper.isDefined) TensorFlow.name
else if (onnxWrapper.isDefined) ONNX.name
else throw new IllegalArgumentException("No model engine defined.")
private val onnxSessionOptions: Map[String, String] = new OnnxSession().getSessionOptions
private def sessionWarmup(): Unit = {
val image =
ImageIOUtils.loadImage(getClass.getResourceAsStream("/image/ox.JPEG"))
val bytes = ImageIOUtils.bufferedImageToByte(image.get)
val images =
Array(AnnotationImage("image", "ox.JPEG", 265, 360, 3, 16, bytes, Map("image" -> "0")))
predict(images, Array("a photo of an ox"), 1)
}
sessionWarmup()
/* Tags images and labels them */
def tag(
batchImages: Array[Array[Array[Array[Float]]]],
labels: Array[Array[Long]]): Array[Array[Float]] = {
detectedEngine match {
case ONNX.name =>
val (runner, _) = onnxWrapper.get.getSession(onnxSessionOptions)
val onnxTensorResources = new TensorResources()
val tokenTensors = onnxTensorResources.createTensor(labels)
val pixelValuesTensor = onnxTensorResources.createTensor(batchImages)
val attentionMaskTensor =
onnxTensorResources.createTensor(Array.fill(labels.length, labels.head.length)(1L))
val inputs =
Map(
"input_ids" -> tokenTensors,
"pixel_values" -> pixelValuesTensor,
"attention_mask" -> attentionMaskTensor).asJava
val results = runner.run(inputs)
val rawLogits = results
.get("logits_per_text")
.get()
.asInstanceOf[OnnxTensor]
.getFloatBuffer
.array()
val batchSize = batchImages.length
results.close()
onnxTensorResources.clearTensors()
// Original Model Output: (num_labels, batch_size)
// Transpose to get (batch_size, num_labels)
val logits = rawLogits.grouped(batchSize).toArray.transpose
logits.map(scores => softmax(scores))
case _ => throw new Exception("Only ONNX is currently supported.")
}
}
def processImage(batch: Array[AnnotationImage]): Array[Array[Array[Array[Float]]]] = {
batch.map { annot =>
val bufferedImage = ImageIOUtils.byteToBufferedImage(
bytes = annot.result,
w = annot.width,
h = annot.height,
nChannels = annot.nChannels)
val resizedAndCroppedImage =
ImageResizeUtils.resizeAndCenterCropImage(
bufferedImage,
requestedSize = preprocessor.size,
cropPct = 1,
resample = preprocessor.resample)
val normalizedImage = ImageResizeUtils.normalizeAndConvertBufferedImage(
img = resizedAndCroppedImage,
mean = preprocessor.image_mean,
std = preprocessor.image_std,
doNormalize = preprocessor.do_normalize,
doRescale = preprocessor.do_rescale,
rescaleFactor = preprocessor.rescale_factor)
normalizedImage
}
}
def encodeLabels(labels: Array[String]): Array[Array[Long]] = {
val tokenIds = labels.map { text =>
val tokens = tokenizer.tokenize(Sentence(text, 0, text.length, 0))
tokenizer.encode(tokens).map(_.pieceId.toLong)
}
// Pad to same length
val padToken = tokenizer.specialTokens.pad.id.toLong
val maxLength = tokenIds.map(_.length).max
tokenIds.map { tokens =>
tokens ++ Array.fill(maxLength - tokens.length)(padToken)
}
}
def predict(
images: Array[AnnotationImage],
labels: Array[String],
batchSize: Int): Seq[Annotation] = {
images
.grouped(batchSize)
.flatMap { batch =>
val processedImages = processImage(batch)
val encodedLabels = encodeLabels(labels)
val logits = tag(processedImages, encodedLabels)
batch.zip(logits).map { case (image, scores) =>
val maxIndex = argmax(scores)
val label: String = labels(maxIndex)
val imageMeta = Map(
"height" -> image.height.toString,
"width" -> image.width.toString,
"nChannels" -> image.nChannels.toString,
"mode" -> image.mode.toString,
"origin" -> image.origin)
val scoreMeta: Map[String, String] = labels.zip(scores.map(_.toString)).toMap
Annotation(
annotatorType = AnnotatorType.CATEGORY,
begin = 0,
end = label.length - 1,
result = label,
metadata = Map("image" -> "0") ++ imageMeta ++ scoreMeta)
}
}
}.toSeq
}