Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.ml.ai
import com.johnsnowlabs.ml.ai.util.PrepareEmbeddings
import com.johnsnowlabs.ml.tensorflow.sentencepiece.{SentencePieceWrapper, SentencepieceEncoder}
import com.johnsnowlabs.ml.tensorflow.sign.{ModelSignatureConstants, ModelSignatureManager}
import com.johnsnowlabs.ml.tensorflow.{TensorResources, TensorflowWrapper}
import com.johnsnowlabs.nlp.annotators.common._
import scala.collection.JavaConverters._
/** XlnetEmbeddings (XLNet): Generalized Autoregressive Pretraining for Language Understanding
*
* Note that this is a very computationally expensive module compared to word embedding modules
* that only perform embedding lookups. The use of an accelerator is recommended.
*
* XLNet is a new unsupervised language representation learning method based on a novel
* generalized permutation language modeling objective. Additionally, XLNet employs
* Transformer-XL as the backbone model, exhibiting excellent performance for language tasks
* involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various
* downstream language tasks including question answering, natural language inference, sentiment
* analysis, and document ranking.
*
* XLNet-Large =
* [[https://storage.googleapis.com/xlnet/released_models/cased_L-24_H-1024_A-16.zip]] |
* 24-layer, 1024-hidden, 16-heads XLNet-Base =
* [[https://storage.googleapis.com/xlnet/released_models/cased_L-12_H-768_A-12.zip]] | 12-layer,
* 768-hidden, 12-heads. This model is trained on full data (different from the one in the
* paper).
*
* '''Sources :'''
*
* [[https://arxiv.org/abs/1906.08237]]
*
* [[https://github.com/zihangdai/xlnet]]
*
* '''Paper abstract: '''
*
* With the capability of modeling bidirectional contexts, denoising autoencoding based
* pretraining like BERT achieves better performance than pretraining approaches based on
* autoregressive language modeling. However, relying on corrupting the input with masks, BERT
* neglects dependency between the masked positions and suffers from a pretrain-finetune
* discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive
* pretraining method that (1) enables learning bidirectional contexts by maximizing the expected
* likelihood over all permutations of the factorization order and (2) overcomes the limitations
* of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from
* Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically,
* under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large
* margin, including question answering, natural language inference, sentiment analysis, and
* document ranking. A list of (hyper-)parameter keys this annotator can take. Users can set and
* get the parameter values through setters and getters, respectively.
*
* @param tensorflowWrapper
* XlmRoberta Model wrapper with TensorFlowWrapper
* @param spp
* XlmRoberta SentencePiece model with SentencePieceWrapper
* @param configProtoBytes
* Configuration for TensorFlow session
* @param signatures
* Model's inputs and output(s) signatures
*/
private[johnsnowlabs] class Xlnet(
val tensorflowWrapper: TensorflowWrapper,
val spp: SentencePieceWrapper,
configProtoBytes: Option[Array[Byte]] = None,
signatures: Option[Map[String, String]] = None)
extends Serializable {
val _tfXlnetSignatures: Map[String, String] =
signatures.getOrElse(ModelSignatureManager.apply())
// keys representing the input and output tensors of the XLNet model
private val SentenceStartTokenId = spp.getSppModel.pieceToId("")
private val SentenceEndTokenId = spp.getSppModel.pieceToId("")
private val SentencePadTokenId = spp.getSppModel.pieceToId("")
private val SentencePieceDelimiterId = spp.getSppModel.pieceToId("▁")
private def sessionWarmup(): Unit = {
val dummyInput =
Array(2834, 26, 23, 2458, 499, 18, 14976, 28, 18, 89, 25, 11574, 9, 4, 3)
tag(Seq(dummyInput))
}
sessionWarmup()
def tag(batch: Seq[Array[Int]]): Seq[Array[Array[Float]]] = {
val maxSentenceLength = batch.map(pieceIds => pieceIds.length).max
val batchLength = batch.length
val tensors = new TensorResources()
val (tokenTensors, maskTensors, segmentTensors) =
PrepareEmbeddings.prepareBatchTensorsWithSegment(
tensors = tensors,
batch = batch,
maxSentenceLength = maxSentenceLength,
batchLength = batchLength,
sentencePadTokenId = SentencePadTokenId)
val runner = tensorflowWrapper
.getTFSessionWithSignature(
configProtoBytes = configProtoBytes,
savedSignatures = signatures,
initAllTables = false)
.runner
runner
.feed(
_tfXlnetSignatures.getOrElse(
ModelSignatureConstants.InputIds.key,
"missing_input_id_key"),
tokenTensors)
.feed(
_tfXlnetSignatures
.getOrElse(ModelSignatureConstants.AttentionMask.key, "missing_input_mask_key"),
maskTensors)
.feed(
_tfXlnetSignatures
.getOrElse(ModelSignatureConstants.TokenTypeIds.key, "missing_segment_ids_key"),
segmentTensors)
.fetch(_tfXlnetSignatures
.getOrElse(ModelSignatureConstants.LastHiddenState.key, "missing_sequence_output_key"))
val outs = runner.run().asScala
val embeddings = TensorResources.extractFloats(outs.head)
tokenTensors.close()
maskTensors.close()
segmentTensors.close()
tensors.clearSession(outs)
tensors.clearTensors()
PrepareEmbeddings.prepareBatchWordEmbeddings(
batch,
embeddings,
maxSentenceLength,
batchLength)
}
def predict(
tokenizedSentences: Seq[TokenizedSentence],
batchSize: Int,
maxSentenceLength: Int,
caseSensitive: Boolean): Seq[WordpieceEmbeddingsSentence] = {
val wordPieceTokenizedSentences =
tokenizeWithAlignment(tokenizedSentences, maxSentenceLength, caseSensitive)
wordPieceTokenizedSentences.zipWithIndex
.grouped(batchSize)
.flatMap { batch =>
val encoded = PrepareEmbeddings.prepareBatchInputsWithPadding(
batch,
maxSentenceLength,
SentenceStartTokenId,
SentenceEndTokenId,
SentencePadTokenId)
val vectors = tag(encoded)
/*Combine tokens and calculated embeddings*/
batch.zip(vectors).map { case (sentence, tokenVectors) =>
val tokenLength = sentence._1.tokens.length
/*All wordpiece embeddings*/
val tokenEmbeddings = tokenVectors.slice(1, tokenLength + 1)
val originalIndexedTokens = tokenizedSentences(sentence._2)
val tokensWithEmbeddings =
sentence._1.tokens.zip(tokenEmbeddings).flatMap { case (token, tokenEmbedding) =>
val tokenWithEmbeddings = TokenPieceEmbeddings(token, tokenEmbedding)
val originalTokensWithEmbeddings = originalIndexedTokens.indexedTokens
.find(p =>
p.begin == tokenWithEmbeddings.begin && tokenWithEmbeddings.isWordStart)
.map { token =>
val originalTokenWithEmbedding = TokenPieceEmbeddings(
TokenPiece(
wordpiece = tokenWithEmbeddings.wordpiece,
token = if (caseSensitive) token.token else token.token.toLowerCase(),
pieceId = tokenWithEmbeddings.pieceId,
isWordStart = tokenWithEmbeddings.isWordStart,
begin = token.begin,
end = token.end),
tokenEmbedding)
originalTokenWithEmbedding
}
originalTokensWithEmbeddings
}
WordpieceEmbeddingsSentence(tokensWithEmbeddings, originalIndexedTokens.sentenceIndex)
}
}
.toSeq
}
def tokenizeWithAlignment(
sentences: Seq[TokenizedSentence],
maxSeqLength: Int,
caseSensitive: Boolean): Seq[WordpieceTokenizedSentence] = {
val encoder =
new SentencepieceEncoder(spp, caseSensitive, delimiterId = SentencePieceDelimiterId)
val sentenceTokenPieces = sentences.map { s =>
val trimmedSentence = s.indexedTokens.take(maxSeqLength - 2)
val wordpieceTokens =
trimmedSentence.flatMap(token => encoder.encode(token)).take(maxSeqLength)
WordpieceTokenizedSentence(wordpieceTokens)
}
sentenceTokenPieces
}
}