All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.johnsnowlabs.ml.tensorflow.TensorflowLD.scala Maven / Gradle / Ivy

/*
 * Copyright 2017-2022 John Snow Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.johnsnowlabs.ml.tensorflow

import com.johnsnowlabs.nlp.annotators.common._
import com.johnsnowlabs.nlp.{Annotation, AnnotatorType}

import scala.collection.JavaConverters._
import scala.collection.immutable.ListMap
import scala.collection.mutable

/** Language Identification and Detection by using CNNs and RNNs architectures in TensowrFlow
  *
  * The models are trained on large datasets such as Wikipedia and Tatoeba The output is a
  * language code in Wiki Code style: https://en.wikipedia.org/wiki/List_of_Wikipedias
  *
  * @param tensorflow
  *   LanguageDetectorDL Model wrapper with TensorFlow Wrapper
  * @param configProtoBytes
  *   Configuration for TensorFlow session
  * @param orderedLanguages
  *   ordered ListMap of language codes detectable by this trained model
  * @param orderedAlphabets
  *   ordered ListMap of alphabets to be used to encode the inputs
  */
private[johnsnowlabs] class TensorflowLD(
    val tensorflow: TensorflowWrapper,
    configProtoBytes: Option[Array[Byte]] = None,
    orderedLanguages: ListMap[String, Int],
    orderedAlphabets: ListMap[String, Int])
    extends Serializable {

  private val inputKey = "inputs:0"
  private val outputKey = "output/Softmax:0"
  // LD models from 2.7.0 must be 150 sequences
  private val maxSentenceLength = 150

  def cleanText(docs: List[String]): List[String] = {
    val rmChars = "!\"#$%&()*+,-./:;<=>?@[\\\\]^_`\\{|\\}~\\t\\n"
    docs.map(_.replaceAll(rmChars, "").toLowerCase())
  }

  def encode(docs: Seq[Sentence]): Array[Array[Float]] = {
    val charsArr = orderedAlphabets.keys.toArray

    docs.map { x =>
      val chars = cleanText(x.content.map(_.toString).toList).take(maxSentenceLength)
      val tokens = mutable.ArrayBuffer[Float]()

      chars.foreach { char =>
        val charID = charsArr.indexOf(char).toFloat
        if (charID >= 0) {
          tokens.append(charID + 1.0f)
        }
      }
      val diff = maxSentenceLength - tokens.length
      tokens.toArray ++ Array.fill(diff)(0.0f)
    }.toArray
  }

  def tag(inputs: Array[Array[Float]], inputSize: Int, outputSize: Int): Array[Array[Float]] = {
    val tensors = new TensorResources()

    val tokenBuffers = tensors.createFloatBuffer(inputs.length * inputSize)
    val shape = Array(inputs.length.toLong, inputSize)

    inputs.zipWithIndex.foreach { case (sentence, idx) =>
      val offset = idx * maxSentenceLength
      tokenBuffers.offset(offset).write(sentence)
    }

    val runner = tensorflow.getTFSession(configProtoBytes = configProtoBytes).runner
    val tokenTensors = tensors.createFloatBufferTensor(shape, tokenBuffers)

    runner
      .feed(inputKey, tokenTensors)
      .fetch(outputKey)

    val outs = runner.run().asScala
    val predictions = TensorResources.extractFloats(outs.head).grouped(outputSize).toArray

    tensors.clearSession(outs)
    tensors.clearTensors()

    predictions

  }

  def predict(
      documents: Seq[Sentence],
      threshold: Float = 0.01f,
      thresholdLabel: String = "unk",
      coalesceSentences: Boolean = false): Array[Annotation] = {

    val sentences = encode(documents)

    val outputDimension = orderedLanguages.toArray.length

    val scores = tag(sentences, maxSentenceLength, outputDimension)
    val langLabels = orderedLanguages.map(x => x._1.mkString).toArray
    val outputs = scores.map(x => x.zip(langLabels))

    if (coalesceSentences) {
      val avgScores =
        outputs.flatMap(x => x.toList).groupBy(_._2).mapValues(_.map(_._1).sum / outputs.length)
      val maxResult = avgScores.maxBy(_._2)
      val finalLabel = if (maxResult._2 >= threshold) maxResult._1 else thresholdLabel

      Array(
        Annotation(
          annotatorType = AnnotatorType.LANGUAGE,
          begin = documents.head.start,
          end = documents.last.end,
          result = finalLabel,
          metadata = Map("sentence" -> documents.head.index.toString) ++ avgScores.flatMap(x =>
            Map(x._1 -> x._2.toString))))

    } else {
      outputs.zip(documents).map { case (score, sentence) =>
        val maxResult = score.maxBy(_._1)
        val finalLabel = if (maxResult._1 >= threshold) maxResult._2 else thresholdLabel

        Annotation(
          annotatorType = AnnotatorType.LANGUAGE,
          begin = sentence.start,
          end = sentence.end,
          result = finalLabel,
          metadata = Map("sentence" -> sentence.index.toString) ++ score.flatMap(x =>
            Map(x._2 -> x._1.toString)))
      }
    }
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy