Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package com.johnsnowlabs.nlp
import com.johnsnowlabs.nlp.AnnotatorType.DOCUMENT
import com.johnsnowlabs.nlp.llama.LlamaModel
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.param.{BooleanParam, Param, ParamMap}
import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Column, DataFrame, Dataset}
import org.apache.spark.sql.types.StructType
/** Assembles a sequence of messages into a single string using a template. These strings can then
* be used as prompts for large language models.
*
* This annotator expects an array of two-tuples as the type of the input column (one array of
* tuples per row). The first element of the tuples should be the role and the second element is
* the text of the message. Possible roles are "system", "user" and "assistant".
*
* An assistant header can be added to the end of the generated string by using
* `setAddAssistant(true)`.
*
* At the moment, this annotator uses llama.cpp as a backend to parse and apply the templates.
* llama.cpp uses basic pattern matching to determine the type of the template, then applies a
* basic version of the template to the messages. This means that more advanced templates are not
* supported.
*
* For an extended example see the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/llama.cpp/PromptAssember_with_AutoGGUFModel.ipynb example notebook]].
*
* ==Example==
* {{{
* // Batches (whole conversations) of arrays of messages
* val data: Seq[Seq[(String, String)]] = Seq(
* Seq(
* ("system", "You are a helpful assistant."),
* ("assistant", "Hello there, how can I help you?"),
* ("user", "I need help with organizing my room.")))
*
* val dataDF = data.toDF("messages")
*
* // llama3.1
* val template =
* "{{- bos_token }} {%- if custom_tools is defined %} {%- set tools = custom_tools %} {%- " +
* "endif %} {%- if not tools_in_user_message is defined %} {%- set tools_in_user_message = true %} {%- " +
* "endif %} {%- if not date_string is defined %} {%- set date_string = \"26 Jul 2024\" %} {%- endif %} " +
* "{%- if not tools is defined %} {%- set tools = none %} {%- endif %} {#- This block extracts the " +
* "system message, so we can slot it into the right place. #} {%- if messages[0]['role'] == 'system' %}" +
* " {%- set system_message = messages[0]['content']|trim %} {%- set messages = messages[1:] %} {%- else" +
* " %} {%- set system_message = \"\" %} {%- endif %} {#- System message + builtin tools #} {{- " +
* "\"<|start_header_id|>system<|end_header_id|>\\n\\n\" }} {%- if builtin_tools is defined or tools is " +
* "not none %} {{- \"Environment: ipython\\n\" }} {%- endif %} {%- if builtin_tools is defined %} {{- " +
* "\"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}} " +
* "{%- endif %} {{- \"Cutting Knowledge Date: December 2023\\n\" }} {{- \"Today Date: \" + date_string " +
* "+ \"\\n\\n\" }} {%- if tools is not none and not tools_in_user_message %} {{- \"You have access to " +
* "the following functions. To call a function, please respond with JSON for a function call.\" }} {{- " +
* "'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its" +
* " value}.' }} {{- \"Do not use variables.\\n\\n\" }} {%- for t in tools %} {{- t | tojson(indent=4) " +
* "}} {{- \"\\n\\n\" }} {%- endfor %} {%- endif %} {{- system_message }} {{- \"<|eot_id|>\" }} {#- " +
* "Custom tools are passed in a user message with some extra guidance #} {%- if tools_in_user_message " +
* "and not tools is none %} {#- Extract the first user message so we can plug it in here #} {%- if " +
* "messages | length != 0 %} {%- set first_user_message = messages[0]['content']|trim %} {%- set " +
* "messages = messages[1:] %} {%- else %} {{- raise_exception(\"Cannot put tools in the first user " +
* "message when there's no first user message!\") }} {%- endif %} {{- " +
* "'<|start_header_id|>user<|end_header_id|>\\n\\n' -}} {{- \"Given the following functions, please " +
* "respond with a JSON for a function call \" }} {{- \"with its proper arguments that best answers the " +
* "given prompt.\\n\\n\" }} {{- 'Respond in the format {\"name\": function name, \"parameters\": " +
* "dictionary of argument name and its value}.' }} {{- \"Do not use variables.\\n\\n\" }} {%- for t in " +
* "tools %} {{- t | tojson(indent=4) }} {{- \"\\n\\n\" }} {%- endfor %} {{- first_user_message + " +
* "\"<|eot_id|>\"}} {%- endif %} {%- for message in messages %} {%- if not (message.role == 'ipython' " +
* "or message.role == 'tool' or 'tool_calls' in message) %} {{- '<|start_header_id|>' + message['role']" +
* " + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }} {%- elif 'tool_calls' in " +
* "message %} {%- if not message.tool_calls|length == 1 %} {{- raise_exception(\"This model only " +
* "supports single tool-calls at once!\") }} {%- endif %} {%- set tool_call = message.tool_calls[0]" +
* ".function %} {%- if builtin_tools is defined and tool_call.name in builtin_tools %} {{- " +
* "'<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}} {{- \"<|python_tag|>\" + tool_call.name + " +
* "\".call(\" }} {%- for arg_name, arg_val in tool_call.arguments | items %} {{- arg_name + '=\"' + " +
* "arg_val + '\"' }} {%- if not loop.last %} {{- \", \" }} {%- endif %} {%- endfor %} {{- \")\" }} {%- " +
* "else %} {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}} {{- '{\"name\": \"' + " +
* "tool_call.name + '\", ' }} {{- '\"parameters\": ' }} {{- tool_call.arguments | tojson }} {{- \"}\" " +
* "}} {%- endif %} {%- if builtin_tools is defined %} {#- This means we're in ipython mode #} {{- " +
* "\"<|eom_id|>\" }} {%- else %} {{- \"<|eot_id|>\" }} {%- endif %} {%- elif message.role == \"tool\" " +
* "or message.role == \"ipython\" %} {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }} {%- " +
* "if message.content is mapping or message.content is iterable %} {{- message.content | tojson }} {%- " +
* "else %} {{- message.content }} {%- endif %} {{- \"<|eot_id|>\" }} {%- endif %} {%- endfor %} {%- if " +
* "add_generation_prompt %} {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }} {%- endif %} "
*
* val promptAssembler = new PromptAssembler()
* .setInputCol("messages")
* .setOutputCol("prompt")
* .setChatTemplate(template)
*
* promptAssembler.transform(dataDF).select("prompt.result").show(truncate = false)
* +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* |result |
* +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* |[<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHello there, how can I help you?<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nI need help with organizing my room.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n]|
* +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
*
* }}}
*
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class PromptAssembler(override val uid: String)
extends Transformer
with DefaultParamsWritable
with HasOutputAnnotatorType
with HasOutputAnnotationCol {
override val outputAnnotatorType: AnnotatorType = DOCUMENT
def this() = this(Identifiable.randomUID("PROMPT_ASSEMBLER"))
val chatTemplate: Param[String] =
new Param[String](this, "chatTemplate", "Template used for the chat")
val inputCol: Param[String] =
new Param[String](this, "inputCol", "Input column containing a sequence of messages")
val addAssistant: BooleanParam =
new BooleanParam(
this,
"addAssistant",
"Whether to add an assistant header to the end of the generated string")
setDefault(addAssistant -> true)
/** Sets the input text column for processing
*
* @group setParam
*/
def setInputCol(value: String): this.type = set(inputCol, value)
def getInputCol: String = $(inputCol)
/** Sets the chat template to be used for the chat. Should be something that llama.cpp can
* parse.
*
* @param value
* The template to use
*/
def setChatTemplate(value: String): this.type = set(chatTemplate, value)
/** Gets the chat template to be used for the chat.
*
* @return
* The template to use
*/
def getChatTemplate: String = $(chatTemplate)
/** Whether to add an assistant header to the end of the generated string.
*
* @param value
* Whether to add the assistant header
*/
def setAddAssistant(value: Boolean): this.type = set(addAssistant, value)
/** Whether to add an assistant header to the end of the generated string.
*
* @return
* Whether to add the assistant header
*/
def getAddAssistant: Boolean = $(addAssistant)
// Expected Input type of the input column
private val expectedInputType = ArrayType(
StructType(
Seq(
StructField("_1", StringType, nullable = true),
StructField("_2", StringType, nullable = true))),
containsNull = true)
/** Adds the result Annotation type to the schema.
*
* Requirement for pipeline transformation validation. It is called on fit()
*/
override final def transformSchema(schema: StructType): StructType = {
val metadataBuilder: MetadataBuilder = new MetadataBuilder()
metadataBuilder.putString("annotatorType", outputAnnotatorType)
val outputFields = schema.fields :+
StructField(
getOutputCol,
ArrayType(Annotation.dataType),
nullable = false,
metadataBuilder.build)
StructType(outputFields)
}
override def transform(dataset: Dataset[_]): DataFrame = {
val metadataBuilder: MetadataBuilder = new MetadataBuilder()
metadataBuilder.putString("annotatorType", outputAnnotatorType)
val columnDataType = dataset.schema.fields
.find(_.name == getInputCol)
.getOrElse(
throw new IllegalArgumentException(s"Dataset does not have any '$getInputCol' column"))
.dataType
val documentAnnotations: Column =
if (columnDataType == expectedInputType) applyTemplate(dataset.col(getInputCol))
else
throw new IllegalArgumentException(
s"Column '$getInputCol' must be of type Array[(String, String)] " +
s"(exactly '$expectedInputType'), but got $columnDataType")
dataset.withColumn(getOutputCol, documentAnnotations.as(getOutputCol, metadataBuilder.build))
}
private def applyTemplate: UserDefinedFunction = udf { chat: Seq[(String, String)] =>
try {
val template = $(chatTemplate)
val chatArray = chat.map { case (role, text) =>
Array(role, text)
}.toArray
val chatString = LlamaModel.applyChatTemplate(template, chatArray, $(addAssistant))
Seq(Annotation(chatString))
} catch {
case _: Exception =>
/*
* when there is a null in the row
* it outputs an empty Annotation
* */
Seq.empty
}
}
override def copy(extra: ParamMap): Transformer = defaultCopy(extra)
}
/** This is the companion object of [[PromptAssembler]]. Please refer to that class for the
* documentation.
*/
object PromptAssembler extends DefaultParamsReadable[PromptAssembler]