Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators
import com.johnsnowlabs.nlp.{Annotation, AnnotatorModel, AnnotatorType, HasSimpleAnnotate}
import org.apache.spark.ml.param.StringArrayParam
import org.apache.spark.ml.util.{DefaultParamsReadable, Identifiable}
import scala.util.matching.Regex
/** This annotator matches a pattern of part-of-speech tags in order to return meaningful phrases
* from document. Extracted part-of-speech tags are mapped onto the sentence, which can then be
* parsed by regular expressions. The part-of-speech tags are wrapped by angle brackets `<>` to
* be easily distinguishable in the text itself. This example sentence will result in the form:
* {{{
* "Peter Pipers employees are picking pecks of pickled peppers."
* "<.>"
* }}}
* To then extract these tags, `regexParsers` need to be set with e.g.:
* {{{
* val chunker = new Chunker()
* .setInputCols("sentence", "pos")
* .setOutputCol("chunk")
* .setRegexParsers(Array("+", "+"))
* }}}
* When defining the regular expressions, tags enclosed in angle brackets are treated as groups,
* so here specifically `"+"` means 1 or more nouns in succession. Additional patterns can
* also be set with `addRegexParsers`.
*
* For more extended examples see the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/chunking/Chunk_Extraction_with_Chunker.ipynb Examples]]
* and the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/ChunkerTestSpec.scala ChunkerTestSpec]].
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.{Chunker, Tokenizer}
* import com.johnsnowlabs.nlp.annotators.pos.perceptron.PerceptronModel
* import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val sentence = new SentenceDetector()
* .setInputCols("document")
* .setOutputCol("sentence")
*
* val tokenizer = new Tokenizer()
* .setInputCols(Array("sentence"))
* .setOutputCol("token")
*
* val POSTag = PerceptronModel.pretrained()
* .setInputCols("document", "token")
* .setOutputCol("pos")
*
* val chunker = new Chunker()
* .setInputCols("sentence", "pos")
* .setOutputCol("chunk")
* .setRegexParsers(Array("+", "+"))
*
* val pipeline = new Pipeline()
* .setStages(Array(
* documentAssembler,
* sentence,
* tokenizer,
* POSTag,
* chunker
* ))
*
* val data = Seq("Peter Pipers employees are picking pecks of pickled peppers.").toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* result.selectExpr("explode(chunk) as result").show(false)
* +-------------------------------------------------------------+
* |result |
* +-------------------------------------------------------------+
* |[chunk, 0, 11, Peter Pipers, [sentence -> 0, chunk -> 0], []]|
* |[chunk, 13, 21, employees, [sentence -> 0, chunk -> 1], []] |
* |[chunk, 35, 39, pecks, [sentence -> 0, chunk -> 2], []] |
* |[chunk, 52, 58, peppers, [sentence -> 0, chunk -> 3], []] |
* +-------------------------------------------------------------+
* }}}
* @see
* [[com.johnsnowlabs.nlp.annotators.pos.perceptron.PerceptronModel PerceptronModel]] for
* Part-Of-Speech tagging
* @param uid
* internal uid required to generate writable annotators
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class Chunker(override val uid: String)
extends AnnotatorModel[Chunker]
with HasSimpleAnnotate[Chunker] {
import com.johnsnowlabs.nlp.AnnotatorType._
/** an array of grammar based chunk parsers
*
* @group param
*/
val regexParsers =
new StringArrayParam(this, "regexParsers", "an array of grammar based chunk parsers")
/** Output annotator type : CHUNK
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = CHUNK
/** Input annotator type : DOCUMENT, POS
*
* @group anno
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(DOCUMENT, POS)
/** A list of regex patterns to match chunks, for example: Array(“‹DT›?‹JJ›*‹NN›”)
*
* @group setParam
*/
def setRegexParsers(value: Array[String]): Chunker = set(regexParsers, value)
/** adds a pattern to the current list of chunk patterns, for example: “‹DT›?‹JJ›*‹NN›”
*
* @group setParam
*/
def addRegexParser(value: String): Chunker = {
set(regexParsers, get(regexParsers).getOrElse(Array.empty[String]) :+ value)
}
/** A list of regex patterns to match chunks, for example: Array(“‹DT›?‹JJ›*‹NN›”)
*
* @group getParam
*/
def getRegexParsers: Array[String] = $(regexParsers)
def this() = this(Identifiable.randomUID("CHUNKER"))
/** @group param */
private lazy val replacements = Map("<" -> "(?:<", ">" -> ">)", "|" -> ">|<")
private lazy val emptyString = ""
/** @group param */
private lazy val POSTagPatterns: Array[Regex] = {
getRegexParsers.map(regexParser => replaceRegexParser(regexParser))
}
private def replaceRegexParser(regexParser: String): Regex = {
replacements
.foldLeft(regexParser)((accumulatedParser, keyValueReplace) =>
accumulatedParser.replaceAllLiterally(keyValueReplace._1, keyValueReplace._2))
.r
}
private def patternMatchIndexes(pattern: Regex, text: String): List[(Int, Int)] = {
pattern.findAllMatchIn(text).map(index => (index.start, index.end)).toList
}
private def patternMatchFirstIndex(pattern: Regex, text: String): List[Int] =
pattern.findAllMatchIn(text).map(_.start).toList
private def getIndexAnnotation(limits: (Int, Int), indexTags: List[(Int, Int)]): List[Int] = {
val indexAnnotation = indexTags.zipWithIndex.collect {
case (range, index) if limits._1 - 1 <= range._1 && limits._2 > range._2 => index
}
indexAnnotation
}
private def getPhrase(
indexAnnotation: List[Int],
annotations: Seq[Annotation]): Seq[Annotation] = {
val annotation = indexAnnotation.map(index => annotations.apply(index))
annotation
}
private def getChunkPhrases(
POSTagPattern: Regex,
POSFormatSentence: String,
annotations: Seq[Annotation]): Option[Array[Seq[Annotation]]] = {
val rangeMatches = patternMatchIndexes(POSTagPattern, POSFormatSentence)
if (rangeMatches.isEmpty) {
None
}
val indexLeftTags = patternMatchFirstIndex("<".r, POSFormatSentence)
val indexRightTags = patternMatchFirstIndex(">".r, POSFormatSentence)
val indexTags = indexLeftTags zip indexRightTags // merge two sequential collections
val indexAnnotations = rangeMatches.map(range => getIndexAnnotation(range, indexTags))
Some(indexAnnotations.map(indexAnnotation => getPhrase(indexAnnotation, annotations)).toArray)
}
override def annotate(annotations: Seq[Annotation]): Seq[Annotation] = {
val sentences = annotations.filter(_.annotatorType == AnnotatorType.DOCUMENT)
sentences.zipWithIndex.flatMap { case (sentence, sentenceIndex) =>
val sentencePos = annotations.filter(pos =>
pos.annotatorType == AnnotatorType.POS &&
pos.begin >= sentence.begin &&
pos.end <= sentence.end)
val POSFormatSentence = sentencePos
.map(annotation => "<" + annotation.result + ">")
.mkString(" ")
.replaceAll("\\s", "")
val chunkPhrases = POSTagPatterns
.flatMap(POSTagPattern => getChunkPhrases(POSTagPattern, POSFormatSentence, sentencePos))
.flatten
val chunkAnnotations = chunkPhrases.zipWithIndex.map { case (phrase, idx) =>
/** avoid exception if any document/sentence is dirty with bad indices */
val result =
try {
sentence.result.substring(
phrase.head.begin - sentence.begin,
phrase.last.end - sentence.begin + 1)
} catch {
case _: Exception => emptyString
}
val start = phrase.head.begin
val end = phrase.last.end
Annotation(
outputAnnotatorType,
start,
end,
result,
Map("sentence" -> sentenceIndex.toString, "chunk" -> idx.toString))
}
/** filter out any annotation with empty result */
chunkAnnotations.filter(x => x.result.nonEmpty)
}
}
}
/** This is the companion object of [[Chunker]]. Please refer to that class for the documentation.
*/
object Chunker extends DefaultParamsReadable[Chunker]