com.johnsnowlabs.nlp.annotators.common.DatasetHelpers.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.common
import com.johnsnowlabs.ml.crf.TextSentenceLabels
import com.johnsnowlabs.ml.tensorflow.SentenceGrouper
import com.johnsnowlabs.nlp.util.SparkNlpConfig
import org.apache.spark.sql.DataFrame
import scala.reflect.ClassTag
object DatasetHelpers {
implicit class DataFrameHelper(dataset: DataFrame) {
def randomize: DataFrame = {
implicit val encoder = SparkNlpConfig.getEncoder(dataset, dataset.schema)
dataset.mapPartitions {
new scala.util.Random().shuffle(_).toIterator
}
}
}
def doSlice[T: ClassTag](
dataset: TraversableOnce[T],
getLen: T => Int,
batchSize: Int = 32): Iterator[Array[T]] = {
val gr = SentenceGrouper[T](getLen)
gr.slice(dataset, batchSize)
}
def slice(
dataset: TraversableOnce[(TextSentenceLabels, WordpieceEmbeddingsSentence)],
batchSize: Int = 32): Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]] = {
doSlice[(TextSentenceLabels, WordpieceEmbeddingsSentence)](
dataset,
_._2.tokens.length,
batchSize)
}
}