Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.johnsnowlabs.nlp.annotators.ner.dl.ZeroShotNerModel.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2023 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.ner.dl
import com.johnsnowlabs.ml.ai.{RoBertaClassification, ZeroShotNerClassification}
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel}
import com.johnsnowlabs.ml.tensorflow.{ReadTensorflowModel, TensorflowWrapper}
import com.johnsnowlabs.ml.util.LoadExternalModel.notSupportedEngineError
import com.johnsnowlabs.ml.util.{ONNX, TensorFlow}
import com.johnsnowlabs.nlp.AnnotatorType.{DOCUMENT, NAMED_ENTITY, TOKEN}
import com.johnsnowlabs.nlp.annotator.RoBertaForQuestionAnswering
import com.johnsnowlabs.nlp.pretrained.ResourceDownloader
import com.johnsnowlabs.nlp.serialization.MapFeature
import com.johnsnowlabs.nlp.{Annotation, AnnotatorType, HasPretrained, ParamsAndFeaturesReadable}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.PipelineStage
import org.apache.spark.ml.param.{FloatParam, StringArrayParam}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.SparkSession
import java.util
import scala.collection.JavaConverters._
/** ZeroShotNerModel implements zero shot named entity recognition by utilizing RoBERTa
* transformer models fine tuned on a question answering task.
*
* Its input is a list of document annotations and it automatically generates questions which are
* used to recognize entities. The definitions of entities is given by a dictionary structures,
* specifying a set of questions for each entity. The model is based on
* RoBertaForQuestionAnswering.
*
* For more extended examples see the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/named-entity-recognition/ZeroShot_NER.ipynb Examples]]
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val zeroShotNer = ZeroShotNerModel.pretrained()
* .setInputCols("document")
* .setOutputCol("zer_shot_ner")
* }}}
*
* For available pretrained models please see the
* [[https://sparknlp.org/models?task=Zero-Shot-NER Models Hub]].
*
* ==Example==
* {{{
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val sentenceDetector = new SentenceDetector()
* .setInputCols(Array("document"))
* .setOutputCol("sentences")
*
* val zeroShotNer = ZeroShotNerModel
* .pretrained()
* .setEntityDefinitions(
* Map(
* "NAME" -> Array("What is his name?", "What is her name?"),
* "CITY" -> Array("Which city?")))
* .setPredictionThreshold(0.01f)
* .setInputCols("sentences")
* .setOutputCol("zero_shot_ner")
*
* val pipeline = new Pipeline()
* .setStages(Array(
* documentAssembler,
* sentenceDetector,
* zeroShotNer))
*
* val model = pipeline.fit(Seq("").toDS.toDF("text"))
* val results = model.transform(
* Seq("Clara often travels between New York and Paris.").toDS.toDF("text"))
*
* results
* .selectExpr("document", "explode(zero_shot_ner) AS entity")
* .select(
* col("entity.result"),
* col("entity.metadata.word"),
* col("entity.metadata.sentence"),
* col("entity.begin"),
* col("entity.end"),
* col("entity.metadata.confidence"),
* col("entity.metadata.question"))
* .show(truncate=false)
*
* +------+-----+--------+-----+---+----------+------------------+
* |result|word |sentence|begin|end|confidence|question |
* +------+-----+--------+-----+---+----------+------------------+
* |B-CITY|Paris|0 |41 |45 |0.78655756|Which is the city?|
* |B-CITY|New |0 |28 |30 |0.29346612|Which city? |
* |I-CITY|York |0 |32 |35 |0.29346612|Which city? |
* +------+-----+--------+-----+---+----------+------------------+
*
* }}}
*
* @see
* [[https://arxiv.org/abs/1907.11692]] for details about the RoBERTa transformer
* @see
* [[RoBertaForQuestionAnswering]] for the SparkNLP implementation of RoBERTa question
* answering
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class ZeroShotNerModel(override val uid: String) extends RoBertaForQuestionAnswering {
/** Annotator reference id. Used to identify elements in metadata or to refer to this annotator
* type
*/
def this() = this(Identifiable.randomUID("ZeroShotNerModel"))
/** Input Annotator Types: DOCUMENT
*
* @group anno
*/
override val inputAnnotatorTypes: Array[String] = Array(DOCUMENT, TOKEN)
/** Output Annotator Types: NAMED_ENTITY
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = NAMED_ENTITY
/** List of definitions of named entities
*
* @group param
*/
private val entityDefinitions = new MapFeature[String, Array[String]](this, "entityDefinitions")
/** Set definitions of named entities
*
* @group setParam
*/
def setEntityDefinitions(definitions: Map[String, Array[String]]): this.type = {
set(this.entityDefinitions, definitions)
}
/** Set definitions of named entities
*
* @group setParam
*/
def setEntityDefinitions(definitions: util.HashMap[String, util.List[String]]): this.type = {
val c = definitions.asScala.mapValues(_.asScala.toList.toArray).toMap
set(this.entityDefinitions, c)
}
/** Get definitions of named entities
*
* @group getParam
*/
private def getEntityDefinitions: scala.collection.immutable.Map[String, Array[String]] = {
if (!entityDefinitions.isSet)
return Map.empty
$$(entityDefinitions)
}
def getEntityDefinitionsStr: Array[String] = {
getEntityDefinitions.map(x => x._1 + "@@@" + x._2.mkString("@@@")).toArray
}
var predictionThreshold =
new FloatParam(this, "predictionThreshold", "Minimal score of predicted entity")
var ignoreEntities = new StringArrayParam(this, "ignoreEntities", "List of entities to ignore")
/** Get the minimum entity prediction score
*
* @group getParam
*/
def getPredictionThreshold: Float = $(predictionThreshold)
/** Set the minimum entity prediction score
*
* @group setParam
*/
def setPredictionThreshold(value: Float): this.type = set(this.predictionThreshold, value)
/** Get the list of questions to catch the distractor entity
*
* @group getParam
*/
def getIgnoreEntities: Array[String] = $(ignoreEntities)
/** Get the list of entities which are recognized
*
* @group getParam
*/
def getEntities: Array[String] = getEntityDefinitions.keys.toArray
/** Set the list of questions to catch the distractor entity
*
* @group setParam
*/
def setIgnoreEntities(value: Array[String]): this.type = set(this.ignoreEntities, value)
private def getNerQuestionAnnotations
: scala.collection.immutable.Map[String, Array[Annotation]] = {
getEntityDefinitions.map(nerDef => {
(
nerDef._1,
nerDef._2.map(nerQ =>
new Annotation(
AnnotatorType.DOCUMENT,
0,
nerQ.length,
nerQ,
Map("entity" -> nerDef._1) ++ Map("ner_question" -> nerQ))))
})
}
private var _model: Option[Broadcast[ZeroShotNerClassification]] = None
override def setModelIfNotSet(
spark: SparkSession,
tensorflowWrapper: Option[TensorflowWrapper],
onnxWrapper: Option[OnnxWrapper]): ZeroShotNerModel = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new ZeroShotNerClassification(
tensorflowWrapper,
onnxWrapper,
sentenceStartTokenId,
sentenceEndTokenId,
padTokenId,
false,
configProtoBytes = getConfigProtoBytes,
tags = Map.empty[String, Int],
signatures = getSignatures,
$$(merges),
$$(vocabulary))))
}
this
}
override def getModelIfNotSet: RoBertaClassification = _model.get.value
setDefault(ignoreEntities -> Array(), predictionThreshold -> 0.01f)
val maskSymbol = "_"
private def spansOverlap(span1: (Int, Int), span2: (Int, Int)): Boolean = {
!((span2._1 > span1._2) || (span1._1 > span2._2))
}
private def recognizeEntities(
document: Annotation,
nerDefs: Map[String, Array[Annotation]]): Seq[Annotation] = {
val docPredictions = nerDefs
.flatMap(nerDef => {
val nerBatch = nerDef._2.map(nerQuestion => Array(nerQuestion, document)).toSeq
val entityPredictions = super
.batchAnnotate(nerBatch)
.zip(nerBatch.map(_.head.result))
.map(x => (x._1.head, x._2))
.filter(x => x._1.result.nonEmpty)
.filter(x =>
(if (x._1.metadata.contains("score"))
x._1.metadata("score").toFloat
else Float.MinValue) > getPredictionThreshold)
entityPredictions.map(prediction =>
new Annotation(
AnnotatorType.CHUNK,
prediction._1.begin,
prediction._1.end,
prediction._1.result,
Map(
"entity" -> nerDef._1,
"sentence" -> document.metadata("sentence"),
"word" -> prediction._1.result,
"confidence" -> prediction._1.metadata("score"),
"question" -> prediction._2)))
})
.toSeq
// Detect overlapping predictions and choose the one with the higher score
docPredictions
.filter(x => ! $(ignoreEntities).contains(x.metadata("entity"))) // Discard ignored entities
.filter(prediction => {
!docPredictions
.filter(_ != prediction)
.exists(otherPrediction => {
spansOverlap(
(prediction.begin, prediction.end),
(otherPrediction.begin, otherPrediction.end)) && (otherPrediction.metadata(
"confidence") > prediction.metadata("confidence"))
})
})
}
def maskEntity(document: Annotation, entity: Annotation): String = {
val entityStart = entity.begin - document.begin
val entityEnd = entity.end - document.begin
// println(document.result.slice(0, entityStart) + maskSymbol + {entityStart to entityEnd - 2}.map(_ => " ").mkString + document.result.slice(entityEnd, $(maxSentenceLength)))
document.result.slice(0, entityStart) + maskSymbol + {
entityStart to entityEnd - 2
}.map(_ => " ").mkString + document.result.slice(entityEnd, $(maxSentenceLength))
}
def recognizeMultipleEntities(
document: Annotation,
nerDefs: Map[String, Array[Annotation]],
recognizedEntities: Seq[Annotation] = Seq()): Seq[Annotation] = {
val newEntities = recognizeEntities(document, nerDefs)
.filter(entity =>
(!recognizedEntities
.exists(recognizedEntity =>
spansOverlap(
(entity.begin, entity.end),
(recognizedEntity.begin, recognizedEntity.end)))) && (entity.result != maskSymbol))
newEntities ++ newEntities.flatMap { entity =>
val newDoc = new Annotation(
document.annotatorType,
document.begin,
document.end,
maskEntity(document, entity),
document.metadata)
recognizeMultipleEntities(
newDoc,
nerDefs.filter(x => x._1 == entity.metadata("entity")),
recognizedEntities ++ newEntities)
}
}
def isTokenInEntity(token: Annotation, entity: Annotation): Boolean = {
(
token.metadata("sentence") == entity.metadata("sentence")
&& (token.begin >= entity.begin) && (token.end <= entity.end)
)
}
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
batchedAnnotations.map(annotations => {
val documents = annotations
.filter(_.annotatorType == AnnotatorType.DOCUMENT)
.toSeq
val tokens = annotations.filter(_.annotatorType == AnnotatorType.TOKEN)
val entities = documents.flatMap { doc =>
recognizeMultipleEntities(doc, getNerQuestionAnnotations).flatMap { entity =>
tokens
.filter(t => isTokenInEntity(t, entity))
.zipWithIndex
.map { case (token, i) =>
val bioPrefix = if (i == 0) "B-" else "I-"
new Annotation(
annotatorType = AnnotatorType.NAMED_ENTITY,
begin = token.begin,
end = token.end,
result = bioPrefix + entity.metadata("entity"),
metadata = Map(
"sentence" -> entity.metadata("sentence"),
"word" -> token.result,
"confidence" -> entity.metadata("confidence"),
"question" -> entity.metadata("question")))
}
}.toList
}
tokens
.map(token => {
val entity = entities.find(e => isTokenInEntity(token, e))
if (entity.nonEmpty) {
entity.get
} else {
new Annotation(
annotatorType = AnnotatorType.NAMED_ENTITY,
begin = token.begin,
end = token.end,
result = "O",
metadata = Map("sentence" -> token.metadata("sentence"), "word" -> token.result))
}
})
.toSeq
})
}
}
trait ReadablePretrainedZeroShotNer
extends ParamsAndFeaturesReadable[ZeroShotNerModel]
with HasPretrained[ZeroShotNerModel] {
override val defaultModelName: Some[String] = Some("zero_shot_ner_roberta")
/** Java compliant-overrides */
override def pretrained(): ZeroShotNerModel =
pretrained(defaultModelName.get, defaultLang, defaultLoc)
override def pretrained(name: String): ZeroShotNerModel =
pretrained(name, defaultLang, defaultLoc)
override def pretrained(name: String, lang: String): ZeroShotNerModel =
pretrained(name, lang, defaultLoc)
override def pretrained(name: String, lang: String, remoteLoc: String): ZeroShotNerModel = {
try {
ZeroShotNerModel.getFromRoBertaForQuestionAnswering(
ResourceDownloader
.downloadModel(RoBertaForQuestionAnswering, name, Option(lang), remoteLoc))
} catch {
case _: java.lang.RuntimeException =>
ResourceDownloader.downloadModel(ZeroShotNerModel, name, Option(lang), remoteLoc)
}
}
override def load(path: String): ZeroShotNerModel = {
try {
super.load(path)
} catch {
case e: java.lang.ClassCastException =>
try {
ZeroShotNerModel.getFromRoBertaForQuestionAnswering(
RoBertaForQuestionAnswering.load(path))
} catch {
case _: Throwable => throw e
}
}
}
}
trait ReadZeroShotNerDLModel extends ReadTensorflowModel with ReadOnnxModel {
this: ParamsAndFeaturesReadable[ZeroShotNerModel] =>
override val tfFile: String = "roberta_classification_tensorflow"
override val onnxFile: String = "roberta_classification_onnx"
def readModel(instance: ZeroShotNerModel, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case TensorFlow.name => {
val tfWrapper =
readTensorflowModel(path, spark, "_roberta_classification_tf", initAllTables = false)
instance.setModelIfNotSet(spark, Some(tfWrapper), None)
}
case ONNX.name => {
val onnxWrapper = readOnnxModel(
path,
spark,
"_roberta_classification_onnx",
zipped = true,
useBundle = false,
None)
instance.setModelIfNotSet(spark, None, Some(onnxWrapper))
}
case _ =>
throw new Exception(notSupportedEngineError)
}
}
addReader(readModel)
}
object ZeroShotNerModel extends ReadablePretrainedZeroShotNer with ReadZeroShotNerDLModel {
def apply(model: PipelineStage): PipelineStage = {
model match {
case answering: RoBertaForQuestionAnswering if !model.isInstanceOf[ZeroShotNerModel] =>
getFromRoBertaForQuestionAnswering(answering)
case _ =>
model
}
}
def getFromRoBertaForQuestionAnswering(model: RoBertaForQuestionAnswering): ZeroShotNerModel = {
val spark = SparkSession.builder.getOrCreate()
val newModel = new ZeroShotNerModel()
.setVocabulary(
model.vocabulary.get.getOrElse(throw new RuntimeException("Vocabulary not set")))
.setMerges(model.merges.get.getOrElse(throw new RuntimeException("Merges not set")))
.setCaseSensitive(model.getCaseSensitive)
.setBatchSize(model.getBatchSize)
if (model.signatures.isSet)
newModel.setSignatures(
model.signatures.get.getOrElse(throw new RuntimeException("Signatures not set")))
model.getEngine match {
case TensorFlow.name =>
newModel.setModelIfNotSet(spark, model.getModelIfNotSet.tensorflowWrapper, None)
case ONNX.name =>
newModel.setModelIfNotSet(spark, None, model.getModelIfNotSet.onnxWrapper)
}
model
.extractParamMap()
.toSeq
.foreach(x => {
newModel.set(x.param.name, x.value)
})
newModel
}
}