Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.parser.dep
import com.johnsnowlabs.nlp.AnnotatorApproach
import com.johnsnowlabs.nlp.AnnotatorType._
import com.johnsnowlabs.nlp.annotators.param.ExternalResourceParam
import com.johnsnowlabs.nlp.annotators.parser.dep.GreedyTransition._
import com.johnsnowlabs.nlp.util.io.{ExternalResource, ReadAs, ResourceHelper}
import org.apache.spark.ml.PipelineModel
import org.apache.spark.ml.param.IntParam
import org.apache.spark.ml.util.{DefaultParamsReadable, Identifiable}
import org.apache.spark.sql.Dataset
import org.slf4j.LoggerFactory
/** Trains an unlabeled parser that finds a grammatical relations between two words in a sentence.
*
* For instantiated/pretrained models, see [[DependencyParserModel]].
*
* Dependency parser provides information about word relationship. For example, dependency
* parsing can tell you what the subjects and objects of a verb are, as well as which words are
* modifying (describing) the subject. This can help you find precise answers to specific
* questions.
*
* The required training data can be set in two different ways (only one can be chosen for a
* particular model):
* - Dependency treebank in the [[http://www.nltk.org/nltk_data/ Penn Treebank format]] set
* with `setDependencyTreeBank`
* - Dataset in the [[https://universaldependencies.org/format.html CoNLL-U format]] set with
* `setConllU`
*
* Apart from that, no additional training data is needed.
*
* See
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/parser/dep/DependencyParserApproachTestSpec.scala DependencyParserApproachTestSpec]]
* for further reference on how to use this API.
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector
* import com.johnsnowlabs.nlp.annotators.Tokenizer
* import com.johnsnowlabs.nlp.annotators.pos.perceptron.PerceptronModel
* import com.johnsnowlabs.nlp.annotators.parser.dep.DependencyParserApproach
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val sentence = new SentenceDetector()
* .setInputCols("document")
* .setOutputCol("sentence")
*
* val tokenizer = new Tokenizer()
* .setInputCols("sentence")
* .setOutputCol("token")
*
* val posTagger = PerceptronModel.pretrained()
* .setInputCols("sentence", "token")
* .setOutputCol("pos")
*
* val dependencyParserApproach = new DependencyParserApproach()
* .setInputCols("sentence", "pos", "token")
* .setOutputCol("dependency")
* .setDependencyTreeBank("src/test/resources/parser/unlabeled/dependency_treebank")
*
* val pipeline = new Pipeline().setStages(Array(
* documentAssembler,
* sentence,
* tokenizer,
* posTagger,
* dependencyParserApproach
* ))
*
* // Additional training data is not needed, the dependency parser relies on the dependency tree bank / CoNLL-U only.
* val emptyDataSet = Seq.empty[String].toDF("text")
* val pipelineModel = pipeline.fit(emptyDataSet)
* }}}
*
* @see
* [[com.johnsnowlabs.nlp.annotators.parser.typdep.TypedDependencyParserApproach TypedDependencyParserApproach]]
* to extract labels for the dependencies
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class DependencyParserApproach(override val uid: String)
extends AnnotatorApproach[DependencyParserModel] {
override val description: String =
"Dependency Parser is an unlabeled parser that finds a grammatical relation between two words in a sentence"
private val logger = LoggerFactory.getLogger("DependencyParserApproach")
def this() = this(Identifiable.randomUID(DEPENDENCY))
/** Dependency treebank source files
*
* @group param
*/
val dependencyTreeBank =
new ExternalResourceParam(this, "dependencyTreeBank", "Dependency treebank source files")
/** Universal Dependencies source files
*
* @group param
*/
val conllU = new ExternalResourceParam(this, "conllU", "Universal Dependencies source files")
/** Number of iterations in training, converges to better accuracy (Default: `10`)
*
* @group param
*/
val numberOfIterations = new IntParam(
this,
"numberOfIterations",
"Number of iterations in training, converges to better accuracy")
/** Dependency treebank folder with files in
* [[http://www.nltk.org/nltk_data/ Penn Treebank format]]
*
* @group setParam
*/
def setDependencyTreeBank(
path: String,
readAs: ReadAs.Format = ReadAs.TEXT,
options: Map[String, String] = Map.empty[String, String]): this.type =
set(dependencyTreeBank, ExternalResource(path, readAs, options))
/** Path to a file in [[https://universaldependencies.org/format.html CoNLL-U format]]
*
* @group setParam
*/
def setConllU(
path: String,
readAs: ReadAs.Format = ReadAs.TEXT,
options: Map[String, String] = Map.empty[String, String]): this.type =
set(conllU, ExternalResource(path, readAs, options))
/** Number of iterations in training, converges to better accuracy
*
* @group setParam
*/
def setNumberOfIterations(value: Int): this.type = set(numberOfIterations, value)
setDefault(dependencyTreeBank, ExternalResource("", ReadAs.TEXT, Map.empty[String, String]))
setDefault(conllU, ExternalResource("", ReadAs.TEXT, Map.empty[String, String]))
setDefault(numberOfIterations, 10)
/** Number of iterations in training, converges to better accuracy
*
* @group getParam
*/
def getNumberOfIterations: Int = $(numberOfIterations)
/** Output annotation type : DEPENDENCY
*
* @group anno
*/
override val outputAnnotatorType: String = DEPENDENCY
/** Input annotation type : DOCUMENT, POS, TOKEN
*
* @group anno
*/
override val inputAnnotatorTypes = Array(DOCUMENT, POS, TOKEN)
private lazy val conllUAsArray = ResourceHelper.parseLines($(conllU))
def readCONLL(filesContent: Seq[Iterator[String]]): List[Sentence] = {
val buffer = StringBuilder.newBuilder
filesContent.foreach { fileContent =>
fileContent.foreach(line => buffer.append(line + System.lineSeparator()))
}
val wholeText = buffer.toString()
val sections = wholeText.split(s"${System.lineSeparator()}${System.lineSeparator()}").toList
val sentences = sections.map(s => {
val lines = s.split(s"${System.lineSeparator()}").toList
val body = lines.map(l => {
val arr = l.split("\\s+")
val (raw, pos, dep) = (arr(0), arr(1), arr(2).toInt)
// CONLL dependency layout assumes [root, word1, word2, ..., wordn] (where n == lines.length)
// our dependency layout assumes [word0, word1, ..., word(n-1)] { root }
val dep_ex = if (dep == 0) lines.length + 1 - 1 else dep - 1
WordData(raw, pos, dep_ex)
})
body // Don't pretty up the sentence itself
})
sentences
}
override def train(
dataset: Dataset[_],
recursivePipeline: Option[PipelineModel]): DependencyParserModel = {
validateTrainingFiles()
val trainingSentences = getTrainingSentences
val (classes, tagDictionary) = TagDictionary.classesAndTagDictionary(trainingSentences)
val tagger = new Tagger(classes, tagDictionary)
val taggerNumberOfIterations = getNumberOfIterations
val dependencyMaker = new DependencyMaker(tagger)
val dependencyMakerPerformanceProgress = (0 until taggerNumberOfIterations).map { seed =>
dependencyMaker.train(trainingSentences, seed)
}
logger.info(s"Dependency Maker Performance = $dependencyMakerPerformanceProgress")
new DependencyParserModel()
.setPerceptron(dependencyMaker)
}
def validateTrainingFiles(): Unit = {
if ($(dependencyTreeBank).path != "" && $(conllU).path != "") {
throw new IllegalArgumentException(
"Use either TreeBank or CoNLL-U format file both are not allowed.")
}
if ($(dependencyTreeBank).path == "" && $(conllU).path == "") {
throw new IllegalArgumentException("Either TreeBank or CoNLL-U format file is required.")
}
}
/** Gets a list of ConnlU training sentences */
def getTrainingSentences: List[Sentence] = {
if ($(dependencyTreeBank).path != "") {
val filesContentTreeBank = getFilesContentTreeBank
readCONLL(filesContentTreeBank)
} else {
getTrainingSentencesFromConllU(conllUAsArray)
}
}
/** Gets a iterable TreeBank */
def getFilesContentTreeBank: Seq[Iterator[String]] =
ResourceHelper.getFilesContentBuffer($(dependencyTreeBank))
def getTrainingSentencesFromConllU(conllUAsArray: Array[String]): List[Sentence] = {
val conllUSentences = conllUAsArray.filterNot(line => lineIsComment(line))
val indexSentenceBoundaries = conllUSentences.zipWithIndex.filter(_._1 == "").map(_._2)
val cleanConllUSentences = indexSentenceBoundaries.zipWithIndex.map {
case (indexSentenceBoundary, index) =>
if (index == 0) {
conllUSentences.slice(index, indexSentenceBoundary)
} else {
conllUSentences.slice(indexSentenceBoundaries(index - 1) + 1, indexSentenceBoundary)
}
}
val sentences = cleanConllUSentences.map { cleanConllUSentence =>
transformToSentences(cleanConllUSentence)
}
sentences.toList
}
def lineIsComment(line: String): Boolean = {
if (line.nonEmpty) {
line(0) == '#'
} else {
false
}
}
def transformToSentences(cleanConllUSentence: Array[String]): Sentence = {
val ID_INDEX = 0
val WORD_INDEX = 1
val POS_INDEX = 4
val HEAD_INDEX = 6
val SEPARATOR = "\\t"
val sentences = cleanConllUSentence.map { conllUWord =>
val wordArray = conllUWord.split(SEPARATOR)
if (wordArray(ID_INDEX).matches("\\d+") && !wordArray(ID_INDEX).contains(".")) {
var head = wordArray(HEAD_INDEX).toInt
if (head == 0) {
head = cleanConllUSentence.length
} else {
head = head - 1
}
WordData(wordArray(WORD_INDEX), wordArray(POS_INDEX), head)
} else {
WordData("", "", -1)
}
}
sentences.filter(word => word.dep != -1).toList
}
}
/** This is the companion object of [[DependencyParserApproach]]. Please refer to that class for
* the documentation.
*/
object DependencyParserApproach extends DefaultParamsReadable[DependencyParserApproach]