Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2023 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.seq2seq
import com.johnsnowlabs.ml.ai.Bart
import com.johnsnowlabs.ml.onnx.OnnxWrapper.EncoderDecoderWithoutPastWrappers
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel, WriteOnnxModel}
import com.johnsnowlabs.ml.tensorflow.{
ReadTensorflowModel,
TensorflowWrapper,
WriteTensorflowModel
}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadTextAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ONNX, TensorFlow}
import com.johnsnowlabs.nlp.AnnotatorType.DOCUMENT
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.serialization.MapFeature
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param._
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.SparkSession
/** BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
* Translation, and Comprehension Transformer
*
* The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art
* language generation model that was introduced by Facebook AI in 2019. It is based on the
* transformer architecture and is designed to handle a wide range of natural language processing
* tasks such as text generation, summarization, and machine translation.
*
* BART is unique in that it is both bidirectional and auto-regressive, meaning that it can
* generate text both from left-to-right and from right-to-left. This allows it to capture
* contextual information from both past and future tokens in a sentence,resulting in more
* accurate and natural language generation.
*
* The model was trained on a large corpus of text data using a combination of unsupervised and
* supervised learning techniques. It incorporates pretraining and fine-tuning phases, where the
* model is first trained on a large unlabeled corpus of text, and then fine-tuned on specific
* downstream tasks.
*
* BART has achieved state-of-the-art performance on a wide range of NLP tasks, including
* summarization, question-answering, and language translation. Its ability to handle multiple
* tasks and its high performance on each of these tasks make it a versatile and valuable tool
* for natural language processing applications.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val bart = BartTransformer.pretrained()
* .setInputCols("document")
* .setOutputCol("generation")
* }}}
* The default model is `"distilbart_xsum_12_6"`, if no name is provided. For available
* pretrained models please see the [[https://sparknlp.org/models?q=bart Models Hub]].
*
* For extended examples of usage, see
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/BartTestSpec.scala BartTestSpec]].
*
* '''References:'''
* - [[https://aclanthology.org/2020.acl-main.703.pdf BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension]]
* - [[https://github.com/pytorch/fairseq]]
*
* '''Paper Abstract:'''
*
* '' We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART
* is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model
* to reconstruct the original text. It uses a standard Tranformer-based neural machine
* translation architecture which, despite its simplicity, can be seen as generalizing BERT (due
* to the bidirectional encoder), GPT (with the left-to-right decoder), and other recent
* pretraining schemes. We evaluate a number of noising approaches, finding the best performance
* by both randomly shuffling the order of sentences and using a novel in-filling scheme, where
* spans of text are replaced with a single mask token. BART is particularly effective when fine
* tuned for text generation but also works well for comprehension tasks. It matches the
* performance of RoBERTa on GLUE and SQuAD, and achieves new stateof-the-art results on a range
* of abstractive dialogue, question answering, and summarization tasks, with gains of up to 3.5
* ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine
* translation, with only target language pretraining. We also replicate other pretraining
* schemes within the BART framework, to understand their effect on end-task performance ''
*
* '''Note:'''
*
* This is a very computationally expensive module especially on larger sequence. The use of an
* accelerator such as GPU is recommended.
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.seq2seq.GPT2Transformer
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("documents")
*
* val bart = BartTransformer.pretrained("distilbart_xsum_12_6")
* .setInputCols(Array("documents"))
* .setMinOutputLength(10)
* .setMaxOutputLength(30)
* .setDoSample(true)
* .setTopK(50)
* .setOutputCol("generation")
*
* val pipeline = new Pipeline().setStages(Array(documentAssembler, bart))
*
* val data = Seq(
* "PG&E stated it scheduled the blackouts in response to forecasts for high winds " +
* "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " +
* "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
* ).toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* results.select("generation.result").show(truncate = false)
* +--------------------------------------------------------------+
* |result |
* +--------------------------------------------------------------+
* |[Nearly 800 thousand customers were affected by the shutoffs.]|
* +--------------------------------------------------------------+
* }}}
*
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class BartTransformer(override val uid: String)
extends AnnotatorModel[BartTransformer]
with HasBatchedAnnotate[BartTransformer]
with ParamsAndFeaturesWritable
with WriteTensorflowModel
with WriteOnnxModel
with HasEngine
with HasGeneratorProperties {
def this() = this(Identifiable.randomUID("BartTRANSFORMER"))
/** Input annotator type : DOCUMENT
*
* @group param
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(DOCUMENT)
/** Output annotator type : DOCUMENT
*
* @group param
*/
override val outputAnnotatorType: String = DOCUMENT
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group param
*/
val configProtoBytes = new IntArrayParam(
this,
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")
/** @group setParam */
def setConfigProtoBytes(bytes: Array[Int]): BartTransformer.this.type =
set(this.configProtoBytes, bytes)
/** @group getParam */
def getConfigProtoBytes: Option[Array[Byte]] = get(this.configProtoBytes).map(_.map(_.toByte))
/** A list of token ids which are ignored in the decoder 's output (Default: `Array()`)
*
* @group param
*/
var ignoreTokenIds = new IntArrayParam(
this,
"ignoreTokenIds",
"A list of token ids which are ignored in the decoder's output")
/** @group setParam */
def setIgnoreTokenIds(tokenIds: Array[Int]): BartTransformer.this.type = {
set(ignoreTokenIds, tokenIds)
}
/** @group getParam */
def getIgnoreTokenIds: Array[Int] = $(ignoreTokenIds)
/** It contains TF model signatures for the laded saved model
*
* @group param
*/
val signatures =
new MapFeature[String, String](model = this, name = "signatures").setProtected()
/** @group setParam */
def setSignatures(value: Map[String, String]): this.type = {
set(signatures, value)
this
}
/** @group getParam */
def getSignatures: Option[Map[String, String]] = get(this.signatures)
private var _tfModel: Option[Broadcast[Bart]] = None
/** Vocabulary used to encode the words to ids with bpeTokenizer.encode
*
* @group param
*/
val vocabulary: MapFeature[String, Int] = new MapFeature(this, "vocabulary").setProtected()
/** @group setParam */
def setVocabulary(value: Map[String, Int]): this.type = set(vocabulary, value)
/** Holding merges.txt coming from RoBERTa model
*
* @group param
*/
val merges: MapFeature[(String, String), Int] = new MapFeature(this, "merges").setProtected()
/** @group setParam */
def setMerges(value: Map[(String, String), Int]): this.type = set(merges, value)
/** Cache internal state of the model to improve performance
*
* @group param
*/
val useCache =
new BooleanParam(parent = this, name = "useCache", doc = "Cache internal state of the model")
protected def setUseCache(value: Boolean): BartTransformer.this.type = {
set(useCache, value)
this
}
def getUseCache: Boolean = $(useCache)
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
tfWrapper: Option[TensorflowWrapper],
onnxWrappers: Option[EncoderDecoderWithoutPastWrappers],
useCache: Boolean): this.type = {
if (_tfModel.isEmpty) {
setUseCache(useCache)
_tfModel = Some(
spark.sparkContext.broadcast(
new Bart(
tfWrapper,
onnxWrappers,
configProtoBytes = getConfigProtoBytes,
signatures = getSignatures,
$$(merges),
$$(vocabulary),
useCache = useCache)))
}
this
}
/** @group getParam */
def getModelIfNotSet: Bart = _tfModel.get.value
setDefault(
task -> "",
minOutputLength -> 0,
maxOutputLength -> 20,
doSample -> false,
temperature -> 1.0,
topK -> 50,
topP -> 1.0,
repetitionPenalty -> 1.0,
noRepeatNgramSize -> 0,
ignoreTokenIds -> Array(),
batchSize -> 1,
beamSize -> 4,
maxInputLength -> 512,
useCache -> true)
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
val allAnnotations = batchedAnnotations
.filter(_.nonEmpty)
.zipWithIndex
.flatMap { case (annotations, i) =>
annotations.filter(_.result.nonEmpty).map(x => (x, i))
}
val processedAnnotations = if (allAnnotations.nonEmpty) {
this.getModelIfNotSet.predict(
sentences = allAnnotations.map(_._1),
batchSize = $(batchSize),
minOutputLength = $(minOutputLength),
maxOutputLength = $(maxOutputLength),
doSample = $(doSample),
temperature = $(temperature),
topK = $(topK),
topP = $(topP),
repetitionPenalty = $(repetitionPenalty),
noRepeatNgramSize = $(noRepeatNgramSize),
task = $(task),
randomSeed = this.randomSeed,
ignoreTokenIds = $(ignoreTokenIds),
beamSize = $(beamSize),
maxInputLength = $(maxInputLength))
} else {
Seq()
}
// Group resulting annotations by rows. If there are not sentences in a given row, return empty sequence
batchedAnnotations.indices.map(rowIndex => {
val rowAnnotations = processedAnnotations
// zip each annotation with its corresponding row index
.zip(allAnnotations)
// select the sentences belonging to the current row
.filter(_._2._2 == rowIndex)
// leave the annotation only
.map(_._1)
if (rowAnnotations.nonEmpty)
rowAnnotations
else
Seq.empty[Annotation]
})
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
getEngine match {
case TensorFlow.name =>
writeTensorflowModelV2(
path,
spark,
getModelIfNotSet.tensorflowWrapper.get,
BartTransformer.suffix,
BartTransformer.tfFile,
configProtoBytes = getConfigProtoBytes,
savedSignatures = getSignatures)
case ONNX.name =>
val wrappers = getModelIfNotSet.onnxWrapper
writeOnnxModels(
path,
spark,
Seq((wrappers.get.encoder, "encoder_model.onnx")),
BartTransformer.suffix)
writeOnnxModels(
path,
spark,
Seq((wrappers.get.decoder, "decoder_model.onnx")),
BartTransformer.suffix)
}
}
}
trait ReadablePretrainedBartTransformerModel
extends ParamsAndFeaturesReadable[BartTransformer]
with HasPretrained[BartTransformer] {
override val defaultModelName: Some[String] = Some("distilbart_xsum_12_6")
/** Java compliant-overrides */
override def pretrained(): BartTransformer = super.pretrained()
override def pretrained(name: String): BartTransformer = super.pretrained(name)
override def pretrained(name: String, lang: String): BartTransformer =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): BartTransformer =
super.pretrained(name, lang, remoteLoc)
}
trait ReadBartTransformerDLModel extends ReadTensorflowModel with ReadOnnxModel {
this: ParamsAndFeaturesReadable[BartTransformer] =>
override val tfFile: String = "bart_tensorflow"
override val onnxFile: String = "bart_onnx"
val suffix: String = "_bart"
def readModel(instance: BartTransformer, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case TensorFlow.name =>
val tf = readTensorflowModel(
path,
spark,
"_bart_tf",
savedSignatures = instance.getSignatures,
initAllTables = false)
instance.setModelIfNotSet(spark, Some(tf), None, instance.getUseCache)
case ONNX.name =>
val decoderWrappers =
readOnnxModels(path, spark, Seq("decoder_model.onnx"), suffix)
val encoderWrappers =
readOnnxModels(path, spark, Seq("encoder_model.onnx"), suffix)
val onnxWrappers =
EncoderDecoderWithoutPastWrappers(
decoder = decoderWrappers("decoder_model.onnx"),
encoder = encoderWrappers("encoder_model.onnx"))
instance.setModelIfNotSet(spark, None, Some(onnxWrappers), instance.getUseCache)
}
}
addReader(readModel)
def loadSavedModel(
modelPath: String,
spark: SparkSession,
useCache: Boolean = true): BartTransformer = {
val (localModelPath, detectedEngine) = modelSanityCheck(modelPath, isEncoderDecoder = true)
val vocabs = loadTextAsset(localModelPath, "vocab.txt").zipWithIndex.toMap
val bytePairs = loadTextAsset(localModelPath, "merges.txt")
.map(_.split(" "))
.filter(w => w.length == 2)
.map { case Array(c1, c2) => (c1, c2) }
.zipWithIndex
.toMap
/*Universal parameters for all engines*/
val annotatorModel = new BartTransformer()
.setVocabulary(vocabs)
.setMerges(bytePairs)
annotatorModel.set(annotatorModel.engine, detectedEngine)
detectedEngine match {
case TensorFlow.name =>
val (wrapper, signatures) =
TensorflowWrapper.read(
localModelPath,
zipped = false,
useBundle = true,
tags = Array("serve"))
val _signatures = signatures match {
case Some(s) => s
case None => throw new Exception("Cannot load signature definitions from model!")
}
/** the order of setSignatures is important if we use getSignatures inside
* setModelIfNotSet
*/
annotatorModel
.setSignatures(_signatures)
.setModelIfNotSet(spark, Some(wrapper), None, useCache)
case ONNX.name =>
val onnxWrapperEncoder =
OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
modelName = "encoder_model",
onnxFileSuffix = None)
val onnxWrapperDecoder =
OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
modelName = "decoder_model",
onnxFileSuffix = None)
val onnxWrappers =
EncoderDecoderWithoutPastWrappers(
encoder = onnxWrapperEncoder,
decoder = onnxWrapperDecoder)
annotatorModel
.setModelIfNotSet(spark, None, Some(onnxWrappers), useCache)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
object BartTransformer
extends ReadablePretrainedBartTransformerModel
with ReadBartTransformerDLModel