Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2024 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.seq2seq
import com.johnsnowlabs.ml.ai.util.Generation.GenerationConfig
import com.johnsnowlabs.ml.ai.M2M100
import com.johnsnowlabs.ml.onnx.OnnxWrapper.EncoderDecoderWithoutPastWrappers
import com.johnsnowlabs.ml.openvino.OpenvinoWrapper.{
EncoderDecoderWithoutPastWrappers => OpenvinoEncoderDecoderWithoutPastWrappers
}
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel, WriteOnnxModel}
import com.johnsnowlabs.ml.openvino.{OpenvinoWrapper, ReadOpenvinoModel, WriteOpenvinoModel}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadJsonStringAsset,
loadSentencePieceAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ONNX, Openvino}
import com.johnsnowlabs.nlp.AnnotatorType.DOCUMENT
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.ml.tensorflow.sentencepiece.{
ReadSentencePieceModel,
SentencePieceWrapper,
WriteSentencePieceModel
}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param._
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.SparkSession
import com.johnsnowlabs.nlp.serialization.{MapFeature, StructFeature}
import com.johnsnowlabs.util.FileHelper
import org.json4s._
import org.json4s.jackson.JsonMethods._
/** M2M100 : multilingual translation model
*
* M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many
* multilingual translation.
*
* The model can directly translate between the 9,900 directions of 100 languages.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val m2m100 = M2M100Transformer.pretrained()
* .setInputCols("document")
* .setOutputCol("generation")
* }}}
* The default model is `"m2m100_418M"`, if no name is provided. For available pretrained models
* please see the [[https://sparknlp.org/models?q=m2m100 Models Hub]].
*
* For extended examples of usage, see
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/M2M100TestSpec.scala M2M100TestSpec]].
*
* '''References:'''
* - [[https://arxiv.org/pdf/2010.11125.pdf Beyond English-Centric Multilingual Machine Translation]]
* - [[https://github.com/pytorch/fairseq/tree/master/examples/m2m_100]]
*
* '''Paper Abstract:'''
*
* ''Existing work in translation demonstrated the potential of massively multilingual machine
* translation by training a single model able to translate between any pair of languages.
* However, much of this work is English-Centric by training only on data which was translated
* from or to English. While this is supported by large sources of training data, it does not
* reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual
* translation model that can translate directly between any pair of 100 languages. We build and
* open source a training dataset that covers thousands of language directions with supervised
* data, created through large-scale mining. Then, we explore how to effectively increase model
* capacity through a combination of dense scaling and language-specific sparse parameters to
* create high quality models. Our focus on non-English-Centric models brings gains of more than
* 10 BLEU when directly translating between non-English directions while performing
* competitively to the best single systems of WMT. We open-source our scripts so that others may
* reproduce the data, evaluation, and final M2M-100 model.''
*
* '''Languages Covered:'''
*
* Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba),
* Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian
* (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English
* (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr),
* Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu),
* Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian
* (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it),
* Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
* Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian
* (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi
* (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern
* Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto;
* Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd),
* Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian
* (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog
* (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof
* (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("documents")
*
* val m2m100 = M2M100Transformer.pretrained("m2m100_418M")
* .setInputCols(Array("documents"))
* .setSrcLang("zh")
* .serTgtLang("en")
* .setMaxOutputLength(100)
* .setDoSample(false)
* .setOutputCol("generation")
*
* val pipeline = new Pipeline().setStages(Array(documentAssembler, m2m100))
*
* val data = Seq(
* "生活就像一盒巧克力。"
* ).toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* results.select("generation.result").show(truncate = false)
* +-------------------------------------------------------------------------------------------+
* |result |
* +-------------------------------------------------------------------------------------------+
* |[ Life is like a box of chocolate.] |
* +-------------------------------------------------------------------------------------------+
* }}}
*
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class M2M100Transformer(override val uid: String)
extends AnnotatorModel[M2M100Transformer]
with HasBatchedAnnotate[M2M100Transformer]
with ParamsAndFeaturesWritable
with WriteOnnxModel
with WriteOpenvinoModel
with HasGeneratorProperties
with WriteSentencePieceModel
with HasEngine {
def this() = this(Identifiable.randomUID("M2M100TRANSFORMER"))
/** Input annotator type : DOCUMENT
*
* @group param
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(DOCUMENT)
/** Output annotator type : DOCUMENT
*
* @group param
*/
override val outputAnnotatorType: String = DOCUMENT
/** @group setParam */
def setRandomSeed(value: Int): M2M100Transformer.this.type = {
if (randomSeed.isEmpty) {
this.randomSeed = Some(value)
}
this
}
/** A list of token ids which are ignored in the decoder's output (Default: `Array()`)
*
* @group param
*/
var ignoreTokenIds = new IntArrayParam(
this,
"ignoreTokenIds",
"A list of token ids which are ignored in the decoder's output")
/** Source Language (Default: `en`)
* @group param
*/
var srcLang = new Param[String](this, "srcLang", "Source language")
/** Target Language (Default: `fr`)
* @group param
*/
var tgtLang = new Param[String](this, "tgtLang", "Target language")
def setSrcLang(value: String): M2M100Transformer.this.type = {
val valueLower = value.toLowerCase
// check if language is supported
if (!languageIds.contains(valueLower)) {
throw new IllegalArgumentException(
s"Language $value is not supported. Supported languages are: ${languageIds.mkString(", ")}")
}
srcLangToken = Some(languageIds.indexOf(valueLower))
set(srcLang, valueLower)
}
def setTgtLang(value: String): M2M100Transformer.this.type = {
val valueLower = value.toLowerCase
// check if language is supported
if (!languageIds.contains(valueLower)) {
throw new IllegalArgumentException(
s"Language $value is not supported. Supported languages are: ${languageIds.mkString(", ")}")
}
tgtLangToken = Some(languageIds.indexOf(valueLower))
set(tgtLang, value)
}
/** @group setParam */
def setIgnoreTokenIds(tokenIds: Array[Int]): M2M100Transformer.this.type = {
set(ignoreTokenIds, tokenIds)
}
/** @group getParam */
def getIgnoreTokenIds: Array[Int] = $(ignoreTokenIds)
def getSrcLangToken: Int = srcLangToken.getOrElse(languageIds.indexOf($(srcLang)))
def getTgtLangToken: Int = tgtLangToken.getOrElse(languageIds.indexOf($(tgtLang)))
private var _model: Option[Broadcast[M2M100]] = None
private var srcLangToken: Option[Int] = None
private var tgtLangToken: Option[Int] = None
/** Vocabulary used to encode the words to ids with bpeTokenizer.encode
*
* @group param
*/
val vocabulary: MapFeature[String, Int] = new MapFeature(this, "vocabulary").setProtected()
/** @group setParam */
def setVocabulary(value: Map[String, Int]): this.type = set(vocabulary, value)
val generationConfig: StructFeature[GenerationConfig] =
new StructFeature(this, "generationConfig").setProtected()
def setGenerationConfig(value: GenerationConfig): this.type =
set(generationConfig, value)
def getGenerationConfig: GenerationConfig = $$(generationConfig)
private val languageIds: Array[String] = Array(
"af",
"am",
"ar",
"ast",
"az",
"ba",
"be",
"bg",
"bn",
"br",
"bs",
"ca",
"ceb",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"fa",
"ff",
"fi",
"fr",
"fy",
"ga",
"gd",
"gl",
"gu",
"ha",
"he",
"hi",
"hr",
"ht",
"hu",
"hy",
"id",
"ig",
"ilo",
"is",
"it",
"ja",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"lb",
"lg",
"ln",
"lo",
"lt",
"lv",
"mg",
"mk",
"ml",
"mn",
"mr",
"ms",
"my",
"ne",
"nl",
"no",
"ns",
"oc",
"or",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"sd",
"si",
"sk",
"sl",
"so",
"sq",
"sr",
"ss",
"su",
"sv",
"sw",
"ta",
"th",
"tl",
"tn",
"tr",
"uk",
"ur",
"uz",
"vi",
"wo",
"xh",
"yi",
"yo",
"zh",
"zu")
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
onnxWrappers: Option[EncoderDecoderWithoutPastWrappers],
openvinoWrapper: Option[OpenvinoEncoderDecoderWithoutPastWrappers],
spp: SentencePieceWrapper): this.type = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new M2M100(
onnxWrappers,
openvinoWrapper,
spp = spp,
generationConfig = getGenerationConfig,
vocab = $$(vocabulary))))
}
this
}
/** @group getParam */
def getModelIfNotSet: M2M100 = _model.get.value
setDefault(
minOutputLength -> 10,
maxOutputLength -> 200,
doSample -> false,
temperature -> 1.0,
topK -> 50,
topP -> 1.0,
repetitionPenalty -> 1.0,
noRepeatNgramSize -> 3,
ignoreTokenIds -> Array(),
batchSize -> 1,
beamSize -> 1,
maxInputLength -> 1024,
srcLang -> "en",
tgtLang -> "fr")
/** takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
val allAnnotations = batchedAnnotations
.filter(_.nonEmpty)
.zipWithIndex
.flatMap { case (annotations, i) =>
annotations.filter(_.result.nonEmpty).map(x => (x, i))
}
val processedAnnotations = if (allAnnotations.nonEmpty) {
this.getModelIfNotSet.predict(
sentences = allAnnotations.map(_._1),
batchSize = $(batchSize),
minOutputLength = $(minOutputLength),
maxOutputLength = $(maxOutputLength),
doSample = $(doSample),
temperature = $(temperature),
topK = $(topK),
topP = $(topP),
repetitionPenalty = $(repetitionPenalty),
noRepeatNgramSize = $(noRepeatNgramSize),
randomSeed = this.randomSeed,
ignoreTokenIds = $(ignoreTokenIds),
beamSize = $(beamSize),
maxInputLength = $(maxInputLength),
srcLangToken = getSrcLangToken,
tgtLangToken = getTgtLangToken)
} else {
Seq()
}
Seq(processedAnnotations)
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
getEngine match {
case ONNX.name =>
val wrappers = getModelIfNotSet.onnxWrappers
val obj = getModelIfNotSet
writeOnnxModels(
path,
spark,
Seq((wrappers.get.encoder, "encoder_model.onnx")),
M2M100Transformer.suffix)
writeOnnxModels(
path,
spark,
Seq((wrappers.get.decoder, "decoder_model.onnx")),
M2M100Transformer.suffix)
writeSentencePieceModel(
path,
spark,
obj.spp,
M2M100Transformer.suffix,
M2M100Transformer.sppFile)
case Openvino.name =>
val wrappers = getModelIfNotSet.openvinoWrapper
writeOpenvinoModels(
path,
spark,
Seq((wrappers.get.encoder, "openvino_encoder_model.xml")),
M2M100Transformer.suffix)
writeOpenvinoModels(
path,
spark,
Seq((wrappers.get.decoder, "openvino_decoder_model.xml")),
M2M100Transformer.suffix)
val obj = getModelIfNotSet
writeSentencePieceModel(
path,
spark,
obj.spp,
M2M100Transformer.suffix,
M2M100Transformer.sppFile)
}
}
}
trait ReadablePretrainedM2M100TransformerModel
extends ParamsAndFeaturesReadable[M2M100Transformer]
with HasPretrained[M2M100Transformer] {
override val defaultModelName: Some[String] = Some("m2m100_418M")
override val defaultLang: String = "xx"
/** Java compliant-overrides */
override def pretrained(): M2M100Transformer = super.pretrained()
override def pretrained(name: String): M2M100Transformer = super.pretrained(name)
override def pretrained(name: String, lang: String): M2M100Transformer =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): M2M100Transformer =
super.pretrained(name, lang, remoteLoc)
}
trait ReadM2M100TransformerDLModel
extends ReadOnnxModel
with ReadOpenvinoModel
with ReadSentencePieceModel {
this: ParamsAndFeaturesReadable[M2M100Transformer] =>
override val onnxFile: String = "m2m100_onnx"
val suffix: String = "_m2m100"
override val sppFile: String = "m2m100_spp"
override val openvinoFile: String = "m2m100_openvino"
def readModel(instance: M2M100Transformer, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case ONNX.name =>
val decoderWrappers =
readOnnxModels(path, spark, Seq("decoder_model.onnx"), suffix)
val encoderWrappers =
readOnnxModels(path, spark, Seq("encoder_model.onnx"), suffix)
val onnxWrappers =
EncoderDecoderWithoutPastWrappers(
decoder = decoderWrappers("decoder_model.onnx"),
encoder = encoderWrappers("encoder_model.onnx"))
val spp = readSentencePieceModel(path, spark, "_m2m100_spp", sppFile)
instance.setModelIfNotSet(spark, Some(onnxWrappers), None, spp)
case Openvino.name =>
val decoderWrappers =
readOpenvinoModels(path, spark, Seq("openvino_decoder_model.xml"), suffix)
val encoderWrappers =
readOpenvinoModels(path, spark, Seq("openvino_encoder_model.xml"), suffix)
val ovWrapper = {
OpenvinoEncoderDecoderWithoutPastWrappers(
encoder = encoderWrappers("openvino_encoder_model.xml"),
decoder = decoderWrappers("openvino_decoder_model.xml"))
}
val spp = readSentencePieceModel(path, spark, "_m2m100_spp", sppFile)
instance.setModelIfNotSet(spark, None, Some(ovWrapper), spp)
case _ =>
throw new Exception(notSupportedEngineError)
}
}
addReader(readModel)
def loadSavedModel(
modelPath: String,
spark: SparkSession,
useOpenvino: Boolean = false): M2M100Transformer = {
implicit val formats: DefaultFormats.type = DefaultFormats // for json4
val (localModelPath, detectedEngine) =
modelSanityCheck(modelPath, isEncoderDecoder = true)
val modelConfig: JValue =
parse(loadJsonStringAsset(localModelPath, "config.json"))
val beginSuppressTokens: Array[Int] =
(modelConfig \ "begin_suppress_tokens").extract[Array[Int]]
val suppressTokenIds: Array[Int] =
(modelConfig \ "suppress_tokens").extract[Array[Int]]
val forcedDecoderIds: Array[(Int, Int)] = Array()
def arrayOrNone[T](array: Array[T]): Option[Array[T]] =
if (array.nonEmpty) Some(array) else None
val bosTokenId = (modelConfig \ "bos_token_id").extract[Int]
val eosTokenId = (modelConfig \ "eos_token_id").extract[Int]
val padTokenId = (modelConfig \ "eos_token_id").extract[Int]
val vocabSize = (modelConfig \ "vocab_size").extract[Int]
val annotatorModel = new M2M100Transformer()
.setGenerationConfig(
GenerationConfig(
bosTokenId,
padTokenId,
eosTokenId,
vocabSize,
arrayOrNone(beginSuppressTokens),
arrayOrNone(suppressTokenIds),
arrayOrNone(forcedDecoderIds)))
val spModel = loadSentencePieceAsset(localModelPath, "sentencepiece.bpe.model")
val vocabulary: JValue =
parse(loadJsonStringAsset(localModelPath, "vocab.json"))
// convert to map
val vocab = vocabulary.extract[Map[String, Int]]
val modelEngine =
if (useOpenvino)
Openvino.name
else
detectedEngine
annotatorModel.setVocabulary(vocab)
annotatorModel.set(annotatorModel.engine, modelEngine)
modelEngine match {
case ONNX.name =>
val onnxWrapperEncoder =
OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
modelName = "encoder_model",
onnxFileSuffix = None)
val onnxWrapperDecoder =
OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
modelName = "decoder_model",
onnxFileSuffix = None)
val onnxWrappers =
EncoderDecoderWithoutPastWrappers(
encoder = onnxWrapperEncoder,
decoder = onnxWrapperDecoder)
annotatorModel
.setModelIfNotSet(spark, Some(onnxWrappers), None, spModel)
case Openvino.name =>
val openvinoEncoderWrapper =
OpenvinoWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
detectedEngine = detectedEngine,
modelName = "openvino_encoder_model")
val openvinoDecoderWrapper =
OpenvinoWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
detectedEngine = detectedEngine,
modelName = "openvino_decoder_model")
val openvinoWrapper =
OpenvinoEncoderDecoderWithoutPastWrappers(
encoder = openvinoEncoderWrapper,
decoder = openvinoDecoderWrapper)
annotatorModel.setModelIfNotSet(spark, None, Some(openvinoWrapper), spModel)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
object M2M100Transformer
extends ReadablePretrainedM2M100TransformerModel
with ReadM2M100TransformerDLModel