All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.johnsnowlabs.nlp.embeddings.XlnetEmbeddings.scala Maven / Gradle / Ivy

/*
 * Copyright 2017-2022 John Snow Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.johnsnowlabs.nlp.embeddings

import com.johnsnowlabs.ml.ai.Xlnet
import com.johnsnowlabs.ml.tensorflow._
import com.johnsnowlabs.ml.tensorflow.sentencepiece.{
  ReadSentencePieceModel,
  SentencePieceWrapper,
  WriteSentencePieceModel
}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
  loadSentencePieceAsset,
  modelSanityCheck,
  notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ModelEngine, TensorFlow}
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.annotators.common._
import com.johnsnowlabs.nlp.serialization.MapFeature
import com.johnsnowlabs.storage.HasStorageRef
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param.{IntArrayParam, IntParam}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.{DataFrame, SparkSession}

/** XlnetEmbeddings (XLNet): Generalized Autoregressive Pretraining for Language Understanding
  *
  * XLNet is a new unsupervised language representation learning method based on a novel
  * generalized permutation language modeling objective. Additionally, XLNet employs
  * Transformer-XL as the backbone model, exhibiting excellent performance for language tasks
  * involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various
  * downstream language tasks including question answering, natural language inference, sentiment
  * analysis, and document ranking.
  *
  * These word embeddings represent the outputs generated by the XLNet models.
  *
  * Note that this is a very computationally expensive module compared to word embedding modules
  * that only perform embedding lookups. The use of an accelerator is recommended.
  *
  * `"xlnet_large_cased"` =
  * [[https://storage.googleapis.com/xlnet/released_models/cased_L-24_H-1024_A-16.zip XLNet-Large]]
  * \| 24-layer, 1024-hidden, 16-heads
  *
  * `"xlnet_base_cased"` =
  * [[https://storage.googleapis.com/xlnet/released_models/cased_L-12_H-768_A-12.zip XLNet-Base]]
  * \| 12-layer, 768-hidden, 12-heads. This model is trained on full data (different from the one
  * in the paper).
  *
  * Pretrained models can be loaded with `pretrained` of the companion object:
  * {{{
  * val embeddings = XlnetEmbeddings.pretrained()
  *   .setInputCols("sentence", "token")
  *   .setOutputCol("embeddings")
  * }}}
  * The default model is `"xlnet_base_cased"`, if no name is provided.
  *
  * For extended examples of usage, see the
  * [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/training/english/dl-ner/ner_xlnet.ipynb Examples]]
  * and the
  * [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/XlnetEmbeddingsTestSpec.scala XlnetEmbeddingsTestSpec]].
  * To see which models are compatible and how to import them see
  * [[https://github.com/JohnSnowLabs/spark-nlp/discussions/5669]].
  *
  * '''Sources :'''
  *
  * [[https://arxiv.org/abs/1906.08237 XLNet: Generalized Autoregressive Pretraining for Language Understanding]]
  *
  * [[https://github.com/zihangdai/xlnet]]
  *
  * '''Paper abstract: '''
  *
  * ''With the capability of modeling bidirectional contexts, denoising autoencoding based
  * pretraining like BERT achieves better performance than pretraining approaches based on
  * autoregressive language modeling. However, relying on corrupting the input with masks, BERT
  * neglects dependency between the masked positions and suffers from a pretrain-finetune
  * discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive
  * pretraining method that (1) enables learning bidirectional contexts by maximizing the expected
  * likelihood over all permutations of the factorization order and (2) overcomes the limitations
  * of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from
  * Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically,
  * under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large
  * margin, including question answering, natural language inference, sentiment analysis, and
  * document ranking.''
  *
  * ==Example==
  * {{{
  * import spark.implicits._
  * import com.johnsnowlabs.nlp.base.DocumentAssembler
  * import com.johnsnowlabs.nlp.annotators.Tokenizer
  * import com.johnsnowlabs.nlp.embeddings.XlnetEmbeddings
  * import com.johnsnowlabs.nlp.EmbeddingsFinisher
  * import org.apache.spark.ml.Pipeline
  *
  * val documentAssembler = new DocumentAssembler()
  *   .setInputCol("text")
  *   .setOutputCol("document")
  *
  * val tokenizer = new Tokenizer()
  *   .setInputCols("document")
  *   .setOutputCol("token")
  *
  * val embeddings = XlnetEmbeddings.pretrained()
  *   .setInputCols("token", "document")
  *   .setOutputCol("embeddings")
  *
  * val embeddingsFinisher = new EmbeddingsFinisher()
  *   .setInputCols("embeddings")
  *   .setOutputCols("finished_embeddings")
  *   .setOutputAsVector(true)
  *   .setCleanAnnotations(false)
  *
  * val pipeline = new Pipeline().setStages(Array(
  *   documentAssembler,
  *   tokenizer,
  *   embeddings,
  *   embeddingsFinisher
  * ))
  *
  * val data = Seq("This is a sentence.").toDF("text")
  * val result = pipeline.fit(data).transform(data)
  *
  * result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
  * +--------------------------------------------------------------------------------+
  * |                                                                          result|
  * +--------------------------------------------------------------------------------+
  * |[-0.6287205219268799,-0.4865287244319916,-0.186111718416214,0.234187275171279...|
  * |[-1.1967450380325317,0.2746637463569641,0.9481253027915955,0.3431355059146881...|
  * |[-1.0777631998062134,-2.092679977416992,-1.5331977605819702,-1.11190271377563...|
  * |[-0.8349916934967041,-0.45627787709236145,-0.7890847325325012,-1.028069257736...|
  * |[-0.134845569729805,-0.11672890186309814,0.4945235550403595,-0.66587203741073...|
  * +--------------------------------------------------------------------------------+
  * }}}
  *
  * @see
  *   [[com.johnsnowlabs.nlp.annotators.classifier.dl.XlnetForTokenClassification XlnetForTokenClassification]]
  *   For Xlnet embeddings with a token classification layer on top
  * @see
  *   [[https://sparknlp.org/docs/en/annotators Annotators Main Page]] for a list of transformer
  *   based embeddings
  * @param uid
  *   required internal uid for saving annotator
  * @groupname anno Annotator types
  * @groupdesc anno
  *   Required input and expected output annotator types
  * @groupname Ungrouped Members
  * @groupname param Parameters
  * @groupname setParam Parameter setters
  * @groupname getParam Parameter getters
  * @groupname Ungrouped Members
  * @groupprio param  1
  * @groupprio anno  2
  * @groupprio Ungrouped 3
  * @groupprio setParam  4
  * @groupprio getParam  5
  * @groupdesc param
  *   A list of (hyper-)parameter keys this annotator can take. Users can set and get the
  *   parameter values through setters and getters, respectively.
  */
class XlnetEmbeddings(override val uid: String)
    extends AnnotatorModel[XlnetEmbeddings]
    with HasBatchedAnnotate[XlnetEmbeddings]
    with WriteTensorflowModel
    with WriteSentencePieceModel
    with HasEmbeddingsProperties
    with HasStorageRef
    with HasCaseSensitiveProperties
    with HasEngine {

  /** Annotator reference id. Used to identify elements in metadata or to refer to this annotator
    * type
    */
  def this() = this(Identifiable.randomUID("XLNET_EMBEDDINGS"))

  /** Input Annotator Type : TOKEN, DOCUMENT
    *
    * @group anno
    */
  override val inputAnnotatorTypes: Array[String] =
    Array(AnnotatorType.DOCUMENT, AnnotatorType.TOKEN)

  /** Output Annotator Type : WORD_EMBEDDINGS
    *
    * @group anno
    */
  override val outputAnnotatorType: AnnotatorType = AnnotatorType.WORD_EMBEDDINGS

  /** ConfigProto from tensorflow, serialized into byte array. Get with
    * config_proto.SerializeToString()
    *
    * @group param
    */
  val configProtoBytes = new IntArrayParam(
    this,
    "configProtoBytes",
    "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")

  /** @group getSaram */
  def setConfigProtoBytes(bytes: Array[Int]): XlnetEmbeddings.this.type =
    set(this.configProtoBytes, bytes)

  /** @group setGaram */
  def getConfigProtoBytes: Option[Array[Byte]] = get(this.configProtoBytes).map(_.map(_.toByte))

  /** Max sentence length to process (Default: `128`)
    *
    * @group param
    */
  val maxSentenceLength =
    new IntParam(this, "maxSentenceLength", "Max sentence length to process")

  /** @group setParam */
  def setMaxSentenceLength(value: Int): this.type = {
    require(
      value <= 512,
      "XLNet model does not support sequences longer than 512 because of trainable positional embeddings")
    require(value >= 1, "The maxSentenceLength must be at least 1")
    set(maxSentenceLength, value)
    this
  }

  /** @group getParam */
  def getMaxSentenceLength: Int = $(maxSentenceLength)

  /** Set dimension of Embeddings Since output shape depends on the model selected, see
    * [[https://github.com/zihangdai/xlnet]]for further reference
    *
    * @group setParam
    */
  override def setDimension(value: Int): this.type = {
    set(this.dimension, value)
  }

  /** It contains TF model signatures for the laded saved model
    *
    * @group param
    */
  val signatures =
    new MapFeature[String, String](model = this, name = "signatures").setProtected()

  /** @group setParam */
  def setSignatures(value: Map[String, String]): this.type = {
    set(signatures, value)
    this
  }

  /** @group getParam */
  def getSignatures: Option[Map[String, String]] = get(this.signatures)

  /** The Tensorflow XLNet Model */
  private var _model: Option[Broadcast[Xlnet]] = None

  /** Sets XLNet tensorflow Model */
  def setModelIfNotSet(
      spark: SparkSession,
      tensorflow: TensorflowWrapper,
      spp: SentencePieceWrapper): this.type = {
    if (_model.isEmpty) {

      _model = Some(
        spark.sparkContext.broadcast(
          new Xlnet(
            tensorflow,
            spp,
            configProtoBytes = getConfigProtoBytes,
            signatures = getSignatures)))
    }

    this
  }

  /** Gets XLNet tensorflow Model */
  def getModelIfNotSet: Xlnet = _model.get.value

  setDefault(batchSize -> 8, dimension -> 768, maxSentenceLength -> 128, caseSensitive -> true)

  /** takes a document and annotations and produces new annotations of this annotator's annotation
    * type
    *
    * @param batchedAnnotations
    *   Annotations that correspond to inputAnnotationCols generated by previous annotators if any
    * @return
    *   any number of annotations processed for every input annotation. Not necessary one to one
    *   relationship
    */
  override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {

    // Unpack annotations and zip each sentence to the index or the row it belongs to
    val sentencesWithRow = batchedAnnotations.zipWithIndex
      .flatMap { case (annotations, i) =>
        TokenizedWithSentence.unpack(annotations).toArray.map(x => (x, i))
      }

    /*Return empty if the real tokens are empty*/
    val sentenceWordEmbeddings = getModelIfNotSet.predict(
      sentencesWithRow.map(_._1),
      $(batchSize),
      $(maxSentenceLength),
      $(caseSensitive))

    // Group resulting annotations by rows. If there are not sentences in a given row, return empty sequence
    batchedAnnotations.indices.map(rowIndex => {
      val rowEmbeddings = sentenceWordEmbeddings
        // zip each annotation with its corresponding row index
        .zip(sentencesWithRow)
        // select the sentences belonging to the current row
        .filter(_._2._2 == rowIndex)
        // leave the annotation only
        .map(_._1)

      if (rowEmbeddings.nonEmpty)
        WordpieceEmbeddingsSentence.pack(rowEmbeddings)
      else
        Seq.empty[Annotation]
    })
  }

  override def onWrite(path: String, spark: SparkSession): Unit = {
    super.onWrite(path, spark)
    writeTensorflowModelV2(
      path,
      spark,
      getModelIfNotSet.tensorflowWrapper,
      "_xlnet",
      XlnetEmbeddings.tfFile,
      configProtoBytes = getConfigProtoBytes)
    writeSentencePieceModel(path, spark, getModelIfNotSet.spp, "_xlnet", XlnetEmbeddings.sppFile)

  }

  override protected def afterAnnotate(dataset: DataFrame): DataFrame = {
    dataset.withColumn(
      getOutputCol,
      wrapEmbeddingsMetadata(dataset.col(getOutputCol), $(dimension), Some($(storageRef))))
  }

}

trait ReadablePretrainedXlnetModel
    extends ParamsAndFeaturesReadable[XlnetEmbeddings]
    with HasPretrained[XlnetEmbeddings] {
  override val defaultModelName: Some[String] = Some("xlnet_base_cased")

  /** Java compliant-overrides */
  override def pretrained(): XlnetEmbeddings = super.pretrained()

  override def pretrained(name: String): XlnetEmbeddings = super.pretrained(name)

  override def pretrained(name: String, lang: String): XlnetEmbeddings =
    super.pretrained(name, lang)

  override def pretrained(name: String, lang: String, remoteLoc: String): XlnetEmbeddings =
    super.pretrained(name, lang, remoteLoc)
}

trait ReadXlnetDLModel extends ReadTensorflowModel with ReadSentencePieceModel {
  this: ParamsAndFeaturesReadable[XlnetEmbeddings] =>

  override val tfFile: String = "xlnet_tensorflow"
  override val sppFile: String = "xlnet_spp"

  def readModel(instance: XlnetEmbeddings, path: String, spark: SparkSession): Unit = {
    val tf = readTensorflowModel(path, spark, "_xlnet_tf", initAllTables = false)
    val spp = readSentencePieceModel(path, spark, "_xlnet_spp", sppFile)
    instance.setModelIfNotSet(spark, tf, spp)
  }

  addReader(readModel)

  def loadSavedModel(modelPath: String, spark: SparkSession): XlnetEmbeddings = {

    val (localModelPath, detectedEngine) = modelSanityCheck(modelPath)

    val spModel = loadSentencePieceAsset(localModelPath, "spiece.model")

    /*Universal parameters for all engines*/
    val annotatorModel = new XlnetEmbeddings()

    annotatorModel.set(annotatorModel.engine, detectedEngine)

    detectedEngine match {
      case TensorFlow.name =>
        val (wrapper, signatures) =
          TensorflowWrapper.read(localModelPath, zipped = false, useBundle = true)

        val _signatures = signatures match {
          case Some(s) => s
          case None => throw new Exception("Cannot load signature definitions from model!")
        }

        /** the order of setSignatures is important if we use getSignatures inside
          * setModelIfNotSet
          */
        annotatorModel
          .setSignatures(_signatures)
          .setModelIfNotSet(spark, wrapper, spModel)

      case _ =>
        throw new Exception(notSupportedEngineError)
    }

    annotatorModel
  }
}

/** This is the companion object of [[XlnetEmbeddings]]. Please refer to that class for the
  * documentation.
  */
object XlnetEmbeddings extends ReadablePretrainedXlnetModel with ReadXlnetDLModel




© 2015 - 2024 Weber Informatics LLC | Privacy Policy