Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.johnsnowlabs.nlp.Annotation.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Dataset, Row}
import scala.collection.Map
/** represents annotator's output parts and their details
*
* @param annotatorType
* the type of annotation
* @param begin
* the index of the first character under this annotation
* @param end
* the index after the last character under this annotation
* @param metadata
* associated metadata for this annotation
*/
case class Annotation(
annotatorType: String,
begin: Int,
end: Int,
result: String,
metadata: Map[String, String],
embeddings: Array[Float] = Array.emptyFloatArray) {
override def equals(obj: Any): Boolean = {
obj match {
case annotation: Annotation =>
this.annotatorType == annotation.annotatorType &&
this.begin == annotation.begin &&
this.end == annotation.end &&
this.result == annotation.result &&
this.metadata == annotation.metadata &&
this.embeddings.sameElements(annotation.embeddings)
case _ => false
}
}
override def toString: String = {
s"Annotation(type: $annotatorType, begin: $begin, end: $end, result: $result)"
}
}
case class JavaAnnotation(
annotatorType: String,
begin: Int,
end: Int,
result: String,
metadata: java.util.Map[String, String],
embeddings: Array[Float] = Array.emptyFloatArray)
object Annotation {
case class AnnotationContainer(__annotation: Array[Annotation])
object extractors {
/** annotation container ready for extraction */
protected class AnnotationData(dataset: Dataset[Row]) {
def collect(column: String): Array[Array[Annotation]] = {
Annotation.collect(dataset, column)
}
def take(column: String, howMany: Int): Array[Array[Annotation]] = {
Annotation.take(dataset, column, howMany)
}
}
implicit def data2andata(dataset: Dataset[Row]): AnnotationData = new AnnotationData(dataset)
}
private val ANNOTATION_NAME = "__annotation"
private val RESULT = "result"
private val EMBEDDINGS = "embeddings"
/** This is spark type of an annotation representing its metadata shape */
val dataType = new StructType(
Array(
StructField("annotatorType", StringType, nullable = true),
StructField("begin", IntegerType, nullable = false),
StructField("end", IntegerType, nullable = false),
StructField("result", StringType, nullable = true),
StructField("metadata", MapType(StringType, StringType), nullable = true),
StructField(EMBEDDINGS, ArrayType(FloatType, false), true)))
val arrayType = new ArrayType(dataType, true)
/** This method converts a [[org.apache.spark.sql.Row]] into an [[Annotation]]
*
* @param row
* spark row to be converted
* @return
* annotation
*/
def apply(row: Row): Annotation = {
Annotation(
row.getString(0),
row.getInt(1),
row.getInt(2),
row.getString(3),
row.getMap[String, String](4),
row.getSeq[Float](5).toArray)
}
def apply(rawText: String): Annotation =
Annotation(
AnnotatorType.DOCUMENT,
0,
rawText.length - 1,
rawText,
Map.empty[String, String],
Array.emptyFloatArray)
/** dataframe collect of a specific annotation column */
def collect(dataset: Dataset[Row], column: String): Array[Array[Annotation]] = {
require(dataset.columns.contains(column), s"column $column not present in data")
import dataset.sparkSession.implicits._
dataset
.withColumnRenamed(column, ANNOTATION_NAME)
.select(ANNOTATION_NAME)
.as[AnnotationContainer]
.map(_.__annotation)
.collect
}
def collect(
dataset: Dataset[Row],
column: String,
columns: String*): Array[Array[Annotation]] = {
dataset
.select(column, columns: _*)
.collect()
.map { row =>
(0 to columns.length)
.flatMap(idx => getAnnotations(row, idx))
.toArray
}
}
def getAnnotations(row: Row, colNum: Int): Seq[Annotation] = {
row.getAs[Seq[Row]](colNum).map(obj => Annotation(obj))
}
def getAnnotations(row: Row, colName: String): Seq[Annotation] = {
row.getAs[Seq[Row]](colName).map(obj => Annotation(obj))
}
/** dataframe take of a specific annotation column */
def take(dataset: Dataset[Row], column: String, howMany: Int): Array[Array[Annotation]] = {
require(dataset.columns.contains(column), s"column $column not present in data")
import dataset.sparkSession.implicits._
dataset
.withColumnRenamed(column, ANNOTATION_NAME)
.select(ANNOTATION_NAME)
.as[AnnotationContainer]
.map(_.__annotation)
.take(howMany)
}
/** dataframe annotation flatmap of results into strings */
def flatten(vSep: String, aSep: String, parseEmbeddings: Boolean): UserDefinedFunction = {
udf { annotations: Seq[Row] =>
annotations
.map(r =>
r.getString(0) match {
case (AnnotatorType.WORD_EMBEDDINGS | AnnotatorType.SENTENCE_EMBEDDINGS)
if (parseEmbeddings) =>
r.getSeq[Float](5).mkString(vSep)
case _ => r.getString(3)
})
.mkString(aSep)
}
}
/** dataframe annotation flatmap of results and metadata key values into strings */
def flattenDetail(vSep: String, aSep: String, parseEmbeddings: Boolean): UserDefinedFunction = {
udf { annotations: Seq[Row] =>
annotations
.map(r =>
r.getString(0) match {
case (AnnotatorType.WORD_EMBEDDINGS | AnnotatorType.SENTENCE_EMBEDDINGS)
if (parseEmbeddings) =>
(r.getMap[String, String](4) ++
Map(RESULT -> r.getString(3)) ++
Map(EMBEDDINGS -> r.getSeq[Float](5).mkString(vSep)))
.mkString(vSep)
.replace(" -> ", "->")
case _ =>
(r.getMap[String, String](4) ++ Map(RESULT -> r.getString(3)))
.mkString(vSep)
.replace(" -> ", "->")
})
.mkString(aSep)
}
}
/** dataframe annotation flatmap of result values as ArrayType */
def flattenArray(parseEmbeddings: Boolean): UserDefinedFunction = {
udf { annotations: Seq[Row] =>
annotations.map(r =>
r.getString(0) match {
case (AnnotatorType.WORD_EMBEDDINGS | AnnotatorType.SENTENCE_EMBEDDINGS)
if (parseEmbeddings) =>
r.getSeq[Float](5).mkString(" ")
case _ => r.getString(3)
})
}
}
/** dataframe annotation flatmap of metadata values as ArrayType */
def flattenArrayMetadata: UserDefinedFunction = {
udf { annotations: Seq[Row] =>
annotations.flatMap(r => {
r.getMap[String, String](4)
})
}
}
private def isInside(a: Annotation, begin: Int, end: Int): Boolean = {
a.begin >= begin && a.end <= end
}
private def searchLabel(
annotations: Array[Annotation],
l: Int,
r: Int,
begin: Int,
end: Int): Seq[Annotation] = {
def getAnswers(ind: Int) = {
val suitable =
if (isInside(annotations(ind), begin, end))
annotations.toList.drop(ind)
else
annotations.toList.drop(ind + 1)
suitable.takeWhile(a => isInside(a, begin, end))
}
val k = (l + r) / 2
if (l >= r)
getAnswers(l)
else if (begin < annotations(k).begin)
searchLabel(annotations, l, k - 1, begin, end)
else if (begin > annotations(k).begin)
searchLabel(annotations, k + 1, r, begin, end)
else
getAnswers(k)
}
/*
Returns Annotations that coverages text segment from begin till end (inclusive)
*/
def searchCoverage(annotations: Array[Annotation], begin: Int, end: Int): Seq[Annotation] = {
searchLabel(annotations, 0, annotations.length - 1, begin, end)
}
def getColumnByType(
dataset: Dataset[_],
inputCols: Array[String],
annotatorType: String): StructField = {
dataset.schema.fields
.find(field =>
inputCols.contains(field.name) &&
field.metadata.contains("annotatorType") &&
field.metadata.getString("annotatorType") == annotatorType)
.getOrElse(throw new IllegalArgumentException(
s"Could not find a column of type $annotatorType in inputCols"))
}
}