com.johnsnowlabs.nlp.SparkNLP.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp
import org.apache.spark.sql.SparkSession
object SparkNLP {
val currentVersion = "4.2.8"
val MavenSpark3 = s"com.johnsnowlabs.nlp:spark-nlp_2.12:$currentVersion"
val MavenGpuSpark3 = s"com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:$currentVersion"
val MavenSparkM1 = s"com.johnsnowlabs.nlp:spark-nlp-m1_2.12:$currentVersion"
val MavenSparkAarch64 = s"com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:$currentVersion"
/** Start SparkSession with Spark NLP
*
* @param gpu
* start Spark NLP with GPU
* @param m1
* start Spark NLP for Apple M1 systems
* @param aarch64
* start Spark NLP for Linux Aarch64 systems
* @param memory
* set driver memory for SparkSession
* @param cache_folder
* The location to download and extract pretrained Models and Pipelines (by default, it will
* be in the users home directory under `cache_pretrained`.)
* @param log_folder
* The location to use on a cluster for temporarily files such as unpacking indexes for
* WordEmbeddings. By default, this locations is the location of `hadoop.tmp.dir` set via
* Hadoop configuration for Apache Spark. NOTE: `S3` is not supported and it must be local,
* HDFS, or DBFS.
* @param cluster_tmp_dir
* The location to save logs from annotators during training (By default, it will be in the
* users home directory under `annotator_logs`.)
* @return
* SparkSession
*/
def start(
gpu: Boolean = false,
m1: Boolean = false,
aarch64: Boolean = false,
memory: String = "16G",
cache_folder: String = "",
log_folder: String = "",
cluster_tmp_dir: String = ""): SparkSession = {
val build = SparkSession
.builder()
.appName("Spark NLP")
.master("local[*]")
.config("spark.driver.memory", memory)
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.driver.maxResultSize", "0")
if (m1) {
build.config("spark.jars.packages", MavenSparkM1)
} else if (aarch64) {
build.config("spark.jars.packages", MavenSparkAarch64)
} else if (gpu) {
build.config("spark.jars.packages", MavenGpuSpark3)
} else {
build.config("spark.jars.packages", MavenSpark3)
}
if (cache_folder.nonEmpty)
build.config("spark.jsl.settings.pretrained.cache_folder", cache_folder)
if (log_folder.nonEmpty)
build.config("spark.jsl.settings.annotator.log_folder", log_folder)
if (cluster_tmp_dir.nonEmpty)
build.config("spark.jsl.settings.storage.cluster_tmp_dir", cluster_tmp_dir)
build.getOrCreate()
}
def version(): String = {
currentVersion
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy