com.johnsnowlabs.nlp.TokenAssembler.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp
import org.apache.spark.ml.param.BooleanParam
import org.apache.spark.ml.util.{DefaultParamsReadable, Identifiable}
import scala.collection.mutable.ArrayBuffer
/** This transformer reconstructs a `DOCUMENT` type annotation from tokens, usually after these
* have been normalized, lemmatized, normalized, spell checked, etc, in order to use this
* document annotation in further annotators. Requires `DOCUMENT` and `TOKEN` type annotations as
* input.
*
* For more extended examples on document pre-processing see the
* [[https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/2.Text_Preprocessing_with_SparkNLP_Annotators_Transformers.ipynb Spark NLP Workshop]].
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.DocumentAssembler
* import com.johnsnowlabs.nlp.annotator.SentenceDetector
* import com.johnsnowlabs.nlp.annotator.Tokenizer
* import com.johnsnowlabs.nlp.annotator.{Normalizer, StopWordsCleaner}
* import com.johnsnowlabs.nlp.TokenAssembler
* import org.apache.spark.ml.Pipeline
*
* // First, the text is tokenized and cleaned
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val sentenceDetector = new SentenceDetector()
* .setInputCols("document")
* .setOutputCol("sentences")
*
* val tokenizer = new Tokenizer()
* .setInputCols("sentences")
* .setOutputCol("token")
*
* val normalizer = new Normalizer()
* .setInputCols("token")
* .setOutputCol("normalized")
* .setLowercase(false)
*
* val stopwordsCleaner = new StopWordsCleaner()
* .setInputCols("normalized")
* .setOutputCol("cleanTokens")
* .setCaseSensitive(false)
*
* // Then the TokenAssembler turns the cleaned tokens into a `DOCUMENT` type structure.
* val tokenAssembler = new TokenAssembler()
* .setInputCols("sentences", "cleanTokens")
* .setOutputCol("cleanText")
*
* val data = Seq("Spark NLP is an open-source text processing library for advanced natural language processing.")
* .toDF("text")
*
* val pipeline = new Pipeline().setStages(Array(
* documentAssembler,
* sentenceDetector,
* tokenizer,
* normalizer,
* stopwordsCleaner,
* tokenAssembler
* )).fit(data)
*
* val result = pipeline.transform(data)
* result.select("cleanText").show(false)
* +---------------------------------------------------------------------------------------------------------------------------+
* |cleanText |
* +---------------------------------------------------------------------------------------------------------------------------+
* |[[document, 0, 80, Spark NLP opensource text processing library advanced natural language processing, [sentence -> 0], []]]|
* +---------------------------------------------------------------------------------------------------------------------------+
* }}}
*
* @see
* [[DocumentAssembler]] on the data structure
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class TokenAssembler(override val uid: String)
extends AnnotatorModel[TokenAssembler]
with HasSimpleAnnotate[TokenAssembler] {
import com.johnsnowlabs.nlp.AnnotatorType._
/** Output annotator types: DOCUMENT
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = DOCUMENT
/** Input annotator types: DOCUMENT, TOKEN
*
* @group anno
*/
override val inputAnnotatorTypes: Array[String] = Array(DOCUMENT, TOKEN)
/** Whether to preserve the actual position of the tokens or reduce them to one space (Default:
* `false`)
*
* @group param
*/
val preservePosition: BooleanParam = new BooleanParam(
this,
"preservePosition",
"Whether to preserve the actual position of the tokens or reduce them to one space")
/** Whether to preserve the actual position of the tokens or reduce them to one space (Default:
* `false`)
*
* @group setParam
*/
def setPreservePosition(value: Boolean): this.type = set(preservePosition, value)
setDefault(preservePosition -> false)
def this() = this(Identifiable.randomUID("TOKEN_ASSEMBLER"))
override def annotate(annotations: Seq[Annotation]): Seq[Annotation] = {
val result = ArrayBuffer[Annotation]()
val sentences_init = annotations.filter(_.annotatorType == AnnotatorType.DOCUMENT)
sentences_init.zipWithIndex.foreach { case (sentence, sentenceIndex) =>
val tokens = annotations.filter(token =>
token.annotatorType == AnnotatorType.TOKEN &&
token.begin >= sentence.begin &&
token.end <= sentence.end)
var fullSentence: String = ""
var lastEnding: Int = -1
tokens.foreach { case (token) =>
if (token.begin > lastEnding && token.begin - lastEnding != 1 && lastEnding != -1) {
if ($(preservePosition)) {
val tokenBreaks = sentence.result
.substring(lastEnding + 1 - sentence.begin, token.begin - sentence.begin)
val matches = ("[\\r\\t\\f\\v\\n ]+".r).findAllIn(tokenBreaks).mkString
if (matches.length > 0) {
fullSentence = fullSentence ++ matches ++ token.result
} else {
fullSentence = fullSentence ++ " " ++ token.result
}
} else {
fullSentence = fullSentence ++ " " ++ token.result
}
} else {
fullSentence = fullSentence ++ token.result
}
lastEnding = token.end
fullSentence
}
val beginIndex = sentence.begin
val endIndex = fullSentence.length - 1
val annotation = Annotation(
DOCUMENT,
beginIndex,
beginIndex + endIndex,
fullSentence,
Map("sentence" -> sentenceIndex.toString))
result.append(annotation)
}
result
}
}
/** This is the companion object of [[TokenAssembler]]. Please refer to that class for the
* documentation.
*/
object TokenAssembler extends DefaultParamsReadable[TokenAssembler]
© 2015 - 2024 Weber Informatics LLC | Privacy Policy