All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.johnsnowlabs.nlp.annotators.ChunkTokenizer.scala Maven / Gradle / Ivy

/*
 * Copyright 2017-2022 John Snow Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.johnsnowlabs.nlp.annotators

import com.johnsnowlabs.nlp.AnnotatorType.{CHUNK, TOKEN}
import com.johnsnowlabs.nlp.util.io.ResourceHelper
import org.apache.spark.ml.PipelineModel
import org.apache.spark.ml.util.{DefaultParamsReadable, Identifiable}
import org.apache.spark.sql.Dataset

/** Tokenizes and flattens extracted NER chunks.
  *
  * The ChunkTokenizer will split the extracted NER `CHUNK` type Annotations and will create
  * `TOKEN` type Annotations. The result is then flattened, resulting in a single array.
  *
  * For extended examples of usage, see the
  * [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/ChunkTokenizerTestSpec.scala ChunkTokenizerTestSpec]].
  *
  * ==Example==
  * {{{
  * import spark.implicits._
  * import com.johnsnowlabs.nlp.DocumentAssembler
  * import com.johnsnowlabs.nlp.annotators.{ChunkTokenizer, TextMatcher, Tokenizer}
  * import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector
  * import com.johnsnowlabs.nlp.util.io.ReadAs
  * import org.apache.spark.ml.Pipeline
  *
  * val documentAssembler = new DocumentAssembler()
  *   .setInputCol("text")
  *   .setOutputCol("document")
  *
  * val sentenceDetector = new SentenceDetector()
  *   .setInputCols(Array("document"))
  *   .setOutputCol("sentence")
  *
  * val tokenizer = new Tokenizer()
  *   .setInputCols(Array("sentence"))
  *   .setOutputCol("token")
  *
  * val entityExtractor = new TextMatcher()
  *   .setInputCols("sentence", "token")
  *   .setEntities("src/test/resources/entity-extractor/test-chunks.txt", ReadAs.TEXT)
  *   .setOutputCol("entity")
  *
  * val chunkTokenizer = new ChunkTokenizer()
  *   .setInputCols("entity")
  *   .setOutputCol("chunk_token")
  *
  * val pipeline = new Pipeline().setStages(Array(
  *     documentAssembler,
  *     sentenceDetector,
  *     tokenizer,
  *     entityExtractor,
  *     chunkTokenizer
  *   ))
  *
  * val data = Seq(
  *   "Hello world, my name is Michael, I am an artist and I work at Benezar",
  *   "Robert, an engineer from Farendell, graduated last year. The other one, Lucas, graduated last week."
  * ).toDF("text")
  * val result = pipeline.fit(data).transform(data)
  *
  * result.selectExpr("entity.result as entity" , "chunk_token.result as chunk_token").show(false)
  * +-----------------------------------------------+---------------------------------------------------+
  * |entity                                         |chunk_token                                        |
  * +-----------------------------------------------+---------------------------------------------------+
  * |[world, Michael, work at Benezar]              |[world, Michael, work, at, Benezar]                |
  * |[engineer from Farendell, last year, last week]|[engineer, from, Farendell, last, year, last, week]|
  * +-----------------------------------------------+---------------------------------------------------+
  * }}}
  *
  * @param uid
  *   required internal uid for saving annotator
  * @groupname anno Annotator types
  * @groupdesc anno
  *   Required input and expected output annotator types
  * @groupname Ungrouped Members
  * @groupname param Parameters
  * @groupname setParam Parameter setters
  * @groupname getParam Parameter getters
  * @groupname Ungrouped Members
  * @groupprio param  1
  * @groupprio anno  2
  * @groupprio Ungrouped 3
  * @groupprio setParam  4
  * @groupprio getParam  5
  * @groupdesc param
  *   A list of (hyper-)parameter keys this annotator can take. Users can set and get the
  *   parameter values through setters and getters, respectively.
  */
class ChunkTokenizer(override val uid: String) extends Tokenizer {

  def this() = this(Identifiable.randomUID("CHUNK_TOKENIZER"))

  /** Input Annotator Type : CHUNK
    *
    * @group anno
    */
  override val inputAnnotatorTypes: Array[AnnotatorType] = Array[AnnotatorType](CHUNK)

  /** Output Annotator Type : TOKEN
    *
    * @group anno
    */
  override val outputAnnotatorType: AnnotatorType = TOKEN

  override def train(
      dataset: Dataset[_],
      recursivePipeline: Option[PipelineModel]): TokenizerModel = {
    val ruleFactory = buildRuleFactory

    val processedExceptions = get(exceptionsPath)
      .map(er => ResourceHelper.parseLines(er))
      .getOrElse(Array.empty[String]) ++ get(exceptions).getOrElse(Array.empty[String])

    val raw = new ChunkTokenizerModel()
      .setCaseSensitiveExceptions($(caseSensitiveExceptions))
      .setTargetPattern($(targetPattern))
      .setRules(ruleFactory)

    if (processedExceptions.nonEmpty)
      raw.setExceptions(processedExceptions)
    else
      raw
  }

}

/** This is the companion object of [[ChunkTokenizer]]. Please refer to that class for the
  * documentation.
  */
object ChunkTokenizer extends DefaultParamsReadable[ChunkTokenizer]




© 2015 - 2024 Weber Informatics LLC | Privacy Policy