com.johnsnowlabs.nlp.annotators.seq2seq.T5Transformer.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.seq2seq
import com.johnsnowlabs.ml.tensorflow.sentencepiece.{
ReadSentencePieceModel,
SentencePieceWrapper,
WriteSentencePieceModel
}
import com.johnsnowlabs.ml.tensorflow.{
ReadTensorflowModel,
TensorflowT5,
TensorflowWrapper,
WriteTensorflowModel
}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadSentencePieceAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.ModelEngine
import com.johnsnowlabs.nlp.AnnotatorType.DOCUMENT
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.serialization.MapFeature
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param._
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.SparkSession
/** T5: the Text-To-Text Transfer Transformer
*
* T5 reconsiders all NLP tasks into a unified text-to-text-format where the input and output are
* always text strings, in contrast to BERT-style models that can only output either a class
* label or a span of the input. The text-to-text framework is able to use the same model, loss
* function, and hyper-parameters on any NLP task, including machine translation, document
* summarization, question answering, and classification tasks (e.g., sentiment analysis). T5 can
* even apply to regression tasks by training it to predict the string representation of a number
* instead of the number itself.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val t5 = T5Transformer.pretrained()
* .setTask("summarize:")
* .setInputCols("document")
* .setOutputCol("summaries")
* }}}
* The default model is `"t5_small"`, if no name is provided. For available pretrained models
* please see the [[https://nlp.johnsnowlabs.com/models?q=t5 Models Hub]].
*
* For extended examples of usage, see the
* [[https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/10.Question_Answering_and_Summarization_with_T5.ipynb Spark NLP Workshop]]
* and the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/T5TestSpec.scala T5TestSpec]].
*
* '''References:'''
* - [[https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer]]
* - [[https://arxiv.org/abs/1910.10683 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer]]
* - [[https://github.com/google-research/text-to-text-transfer-transformer]]
*
* '''Paper Abstract:'''
*
* ''Transfer learning, where a model is first pre-trained on a data-rich task before being
* fine-tuned on a downstream task, has emerged as a powerful technique in natural language
* processing (NLP). The effectiveness of transfer learning has given rise to a diversity of
* approaches, methodology, and practice. In this paper, we explore the landscape of transfer
* learning techniques for NLP by introducing a unified framework that converts all text-based
* language problems into a text-to-text format. Our systematic study compares pre-training
* objectives, architectures, unlabeled data sets, transfer approaches, and other factors on
* dozens of language understanding tasks. By combining the insights from our exploration with
* scale and our new Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many
* benchmarks covering summarization, question answering, text classification, and more. To
* facilitate future work on transfer learning for NLP, we release our data set, pre-trained
* models, and code.''
*
* '''Note:'''
*
* This is a very computationally expensive module especially on larger sequence. The use of an
* accelerator such as GPU is recommended.
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.seq2seq.T5Transformer
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("documents")
*
* val t5 = T5Transformer.pretrained("t5_small")
* .setTask("summarize:")
* .setInputCols(Array("documents"))
* .setMaxOutputLength(200)
* .setOutputCol("summaries")
*
* val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))
*
* val data = Seq(
* "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a " +
* "downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness" +
* " of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this " +
* "paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework " +
* "that converts all text-based language problems into a text-to-text format. Our systematic study compares " +
* "pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens " +
* "of language understanding tasks. By combining the insights from our exploration with scale and our new " +
* "Colossal Clean Crawled Corpus, we achieve state-of-the-art results on many benchmarks covering " +
* "summarization, question answering, text classification, and more. To facilitate future work on transfer " +
* "learning for NLP, we release our data set, pre-trained models, and code."
* ).toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* result.select("summaries.result").show(false)
* +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* |result |
* +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* |[transfer learning has emerged as a powerful technique in natural language processing (NLP) the effectiveness of transfer learning has given rise to a diversity of approaches, methodologies, and practice .]|
* +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* }}}
*
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class T5Transformer(override val uid: String)
extends AnnotatorModel[T5Transformer]
with HasBatchedAnnotate[T5Transformer]
with ParamsAndFeaturesWritable
with WriteTensorflowModel
with WriteSentencePieceModel
with HasEngine {
def this() = this(Identifiable.randomUID("T5TRANSFORMER"))
/** Input annotator type : DOCUMENT
*
* @group param
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(DOCUMENT)
/** Output annotator type : DOCUMENT
*
* @group param
*/
override val outputAnnotatorType: String = DOCUMENT
/** Set transformer task, e.g. `"summarize:"` (Default: `""`). The T5 task needs to be in the
* format `"task:"`.
*
* @group param
*/
val task = new Param[String](this, "task", "Set transformer task, e.g. 'summarize'")
/** @group setParam */
def setTask(value: String): T5Transformer.this.type = {
set(task, value)
this
}
/** Minimum length of the sequence to be generated (Default: `0`)
*
* @group param
*/
val minOutputLength =
new IntParam(this, "minOutputLength", "Minimum length of the sequence to be generated")
/** @group setParam */
def setMinOutputLength(value: Int): T5Transformer.this.type = {
set(minOutputLength, value)
this
}
/** @group getParam */
def getMinOutputLength: Int = $(this.minOutputLength)
/** Maximum length of the sequence to be generated (Default: `20`)
*
* @group param
*/
val maxOutputLength =
new IntParam(this, "maxOutputLength", "Maximum length of the sequence to be generated")
/** @group setParam */
def setMaxOutputLength(value: Int): T5Transformer.this.type = {
set(maxOutputLength, value)
this
}
/** @group getParam */
def getMaxOutputLength: Int = $(this.maxOutputLength)
/** Whether or not to use sampling, use greedy decoding otherwise (Default: `false`)
*
* @group param
*/
val doSample = new BooleanParam(
this,
"doSample",
"Whether or not to use sampling; use greedy decoding otherwise")
/** @group setParam */
def setDoSample(value: Boolean): T5Transformer.this.type = {
set(doSample, value)
this
}
/** @group getParam */
def getDoSample: Boolean = $(this.doSample)
/** The value used to module the next token probabilities (Default: `1.0`)
*
* @group param
*/
val temperature =
new DoubleParam(this, "temperature", "The value used to module the next token probabilities")
/** @group setParam */
def setTemperature(value: Double): T5Transformer.this.type = {
set(temperature, value)
this
}
/** @group getParam */
def getTemperature: Double = $(this.temperature)
/** The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
* `50`)
*
* @group param
*/
val topK = new IntParam(
this,
"topK",
"The number of highest probability vocabulary tokens to keep for top-k-filtering")
/** @group setParam */
def setTopK(value: Int): T5Transformer.this.type = {
set(topK, value)
this
}
/** @group getParam */
def getTopK: Int = $(this.topK)
/** If set to float < `1.0`, only the most probable tokens with probabilities that add up to
* `topP` or higher are kept for generation (Default: `1.0`)
*
* @group param
*/
val topP = new DoubleParam(
this,
"topP",
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation")
/** @group setParam */
def setTopP(value: Double): T5Transformer.this.type = {
set(topP, value)
this
}
/** @group getParam */
def getTopP: Double = $(this.topP)
/** The parameter for repetition penalty (Default: `1.0`). `1.0` means no penalty. See
* [[https://arxiv.org/pdf/1909.05858.pdf this paper]] for more details.
*
* @group param
*/
val repetitionPenalty = new DoubleParam(
this,
"repetitionPenalty",
"The parameter for repetition penalty. 1.0 means no penalty.")
/** @group setParam */
def setRepetitionPenalty(value: Double): T5Transformer.this.type = {
set(repetitionPenalty, value)
this
}
/** @group getParam */
def getRepetitionPenalty: Double = $(this.repetitionPenalty)
/** If set to int > `0`, all ngrams of that size can only occur once (Default: `0`)
*
* @group param
*/
val noRepeatNgramSize = new IntParam(
this,
"noRepeatNgramSize",
"If set to int > 0, all ngrams of that size can only occur once")
/** @group setParam */
def setNoRepeatNgramSize(value: Int): T5Transformer.this.type = {
set(noRepeatNgramSize, value)
this
}
/** @group getParam */
def getNoRepeatNgramSize: Int = $(this.noRepeatNgramSize)
/** Optional Random seed for the model. Needs to be of type `Long`.
*
* @group param
*/
var randomSeed: Option[Long] = None
/** @group setParam */
def setRandomSeed(value: Long): T5Transformer.this.type = {
if (randomSeed.isEmpty) {
this.randomSeed = Some(value)
}
this
}
/** @group getParam */
def getRandomSeed: Option[Long] = this.randomSeed
/** A list of token ids which are ignored in the decoder's output
*
* @group param
*/
var ignoreTokenIds = new IntArrayParam(
this,
"ignoreTokenIds",
"A list of token ids which are ignored in the decoder's output")
/** @group setParam */
def setIgnoreTokenIds(tokenIds: Array[Int]): T5Transformer.this.type = {
set(ignoreTokenIds, tokenIds)
}
/** @group getParam */
def getIgnoreTokenIds: Array[Int] = $(ignoreTokenIds)
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group param
*/
val configProtoBytes = new IntArrayParam(
this,
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")
/** @group setParam */
def setConfigProtoBytes(bytes: Array[Int]): T5Transformer.this.type =
set(this.configProtoBytes, bytes)
/** @group getParam */
def getConfigProtoBytes: Option[Array[Byte]] = get(this.configProtoBytes).map(_.map(_.toByte))
/** It contains TF model signatures for the laded saved model
*
* @group param
*/
val signatures = new MapFeature[String, String](model = this, name = "signatures")
/** @group setParam */
def setSignatures(value: Map[String, String]): this.type = {
if (get(signatures).isEmpty)
set(signatures, value)
this
}
/** @group getParam */
def getSignatures: Option[Map[String, String]] = get(this.signatures)
private var _model: Option[Broadcast[TensorflowT5]] = None
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
tfWrapper: TensorflowWrapper,
spp: SentencePieceWrapper): this.type = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new TensorflowT5(
tfWrapper,
spp,
configProtoBytes = getConfigProtoBytes,
signatures = getSignatures)))
}
this
}
/** @group getParam */
def getModelIfNotSet: TensorflowT5 = _model.get.value
setDefault(
task -> "",
minOutputLength -> 0,
maxOutputLength -> 20,
doSample -> false,
temperature -> 1.0,
topK -> 50,
topP -> 1.0,
repetitionPenalty -> 1.0,
noRepeatNgramSize -> 0,
ignoreTokenIds -> Array(),
batchSize -> 1)
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
val allAnnotations = batchedAnnotations
.filter(_.nonEmpty)
.zipWithIndex
.flatMap { case (annotations, i) =>
annotations.filter(_.result.nonEmpty).map(x => (x, i))
}
val processedAnnotations = if (allAnnotations.nonEmpty) {
this.getModelIfNotSet.predict(
sentences = allAnnotations.map(_._1),
batchSize = $(batchSize),
minOutputLength = $(minOutputLength),
maxOutputLength = $(maxOutputLength),
doSample = $(doSample),
temperature = $(temperature),
topK = $(topK),
topP = $(topP),
repetitionPenalty = $(repetitionPenalty),
noRepeatNgramSize = $(noRepeatNgramSize),
task = $(task),
randomSeed = this.randomSeed,
ignoreTokenIds = $(ignoreTokenIds))
} else {
Seq()
}
// Group resulting annotations by rows. If there are not sentences in a given row, return empty sequence
batchedAnnotations.indices.map(rowIndex => {
val rowAnnotations = processedAnnotations
// zip each annotation with its corresponding row index
.zip(allAnnotations)
// select the sentences belonging to the current row
.filter(_._2._2 == rowIndex)
// leave the annotation only
.map(_._1)
if (rowAnnotations.nonEmpty)
rowAnnotations
else
Seq.empty[Annotation]
})
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
writeTensorflowModelV2(
path,
spark,
getModelIfNotSet.tensorflow,
"_t5",
T5Transformer.tfFile,
configProtoBytes = getConfigProtoBytes,
savedSignatures = getSignatures)
writeSentencePieceModel(path, spark, getModelIfNotSet.spp, "_t5", T5Transformer.sppFile)
}
}
trait ReadablePretrainedT5TransformerModel
extends ParamsAndFeaturesReadable[T5Transformer]
with HasPretrained[T5Transformer] {
override val defaultModelName: Some[String] = Some("t5_small")
/** Java compliant-overrides */
override def pretrained(): T5Transformer = super.pretrained()
override def pretrained(name: String): T5Transformer = super.pretrained(name)
override def pretrained(name: String, lang: String): T5Transformer =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): T5Transformer =
super.pretrained(name, lang, remoteLoc)
}
trait ReadT5TransformerTensorflowModel extends ReadTensorflowModel with ReadSentencePieceModel {
this: ParamsAndFeaturesReadable[T5Transformer] =>
override val tfFile: String = "t5_tensorflow"
override val sppFile: String = "t5_spp"
def readTensorflow(instance: T5Transformer, path: String, spark: SparkSession): Unit = {
val tf = readTensorflowModel(
path,
spark,
"_t5_tf",
savedSignatures = instance.getSignatures,
initAllTables = false)
val spp = readSentencePieceModel(path, spark, "_t5_spp", sppFile)
instance.setModelIfNotSet(spark, tf, spp)
}
addReader(readTensorflow)
def loadSavedModel(modelPath: String, spark: SparkSession): T5Transformer = {
val (localModelPath, detectedEngine) = modelSanityCheck(modelPath)
/*Universal parameters for all engines*/
val annotatorModel = new T5Transformer()
annotatorModel.set(annotatorModel.engine, detectedEngine)
val spModel = loadSentencePieceAsset(localModelPath, "spiece.model")
detectedEngine match {
case ModelEngine.tensorflow =>
val (wrapper, signatures) = TensorflowWrapper.read(
localModelPath,
zipped = false,
useBundle = true,
tags = Array("serve"),
initAllTables = false)
val _signatures = signatures match {
case Some(s) => s
case None => throw new Exception("Cannot load signature definitions from model!")
}
/** the order of setSignatures is important if we use getSignatures inside
* setModelIfNotSet
*/
annotatorModel
.setSignatures(_signatures)
.setModelIfNotSet(spark, wrapper, spModel)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
/** This is the companion object of [[T5Transformer]]. Please refer to that class for the
* documentation.
*/
object T5Transformer
extends ReadablePretrainedT5TransformerModel
with ReadT5TransformerTensorflowModel
with ReadSentencePieceModel
© 2015 - 2024 Weber Informatics LLC | Privacy Policy