com.johnsnowlabs.nlp.annotators.tokenizer.bpe.BpeSpecialTokens.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.tokenizer.bpe
private[nlp] class SpecialTokens(
vocab: Map[String, Int],
startTokenString: String,
endTokenString: String,
unkTokenString: String,
maskTokenString: String,
padTokenString: String,
additionalStrings: Array[String] = Array()) {
val allTokenStrings: Array[String] = Array(
maskTokenString,
startTokenString,
endTokenString,
unkTokenString,
padTokenString) ++ additionalStrings
for (specialTok <- allTokenStrings)
require(vocab.contains(specialTok), s"Special Token '$specialTok' needs to be in vocabulary.")
val sentenceStart: SpecialToken = SpecialToken(startTokenString, vocab(startTokenString))
val sentenceEnd: SpecialToken = SpecialToken(endTokenString, vocab(endTokenString))
val unk: SpecialToken = SpecialToken(unkTokenString, vocab(unkTokenString))
val mask: SpecialToken = SpecialToken(
maskTokenString,
vocab(maskTokenString),
lstrip = true // TODO: check if should be done for every model
)
val pad: SpecialToken = SpecialToken(padTokenString, vocab(padTokenString))
val additionalTokens: Array[SpecialToken] =
additionalStrings.map((tok: String) => SpecialToken(tok, vocab(tok)))
// Put mask first, in case all special tokens are identical (so the stripping can be done first)
val allTokens: Set[SpecialToken] =
Set(mask, sentenceStart, sentenceEnd, unk, pad) ++ additionalTokens
def contains(s: String): Boolean = allTokens.contains(SpecialToken(content = s, id = 0))
}
private[nlp] object SpecialTokens {
def getSpecialTokensForModel(modelType: String, vocab: Map[String, Int]): SpecialTokens =
modelType match {
case "roberta" =>
new SpecialTokens(
vocab,
startTokenString = "",
endTokenString = "",
unkTokenString = "",
maskTokenString = "",
padTokenString = "")
case "gpt2" =>
new SpecialTokens(
vocab,
startTokenString = "<|endoftext|>",
endTokenString = "<|endoftext|>",
unkTokenString = "<|endoftext|>",
maskTokenString = "<|endoftext|>",
padTokenString = "<|endoftext|>")
case "xlm" =>
new SpecialTokens(
vocab,
"",
"",
"",
"",
"",
Array(
"",
"",
"",
"",
"",
"",
"",
"",
""))
}
}
case class SpecialToken(
content: String,
id: Int,
singleWord: Boolean = false,
lstrip: Boolean = false,
rstrip: Boolean = false) {
override def hashCode(): Int = content.hashCode
override def canEqual(that: Any): Boolean = that.isInstanceOf[SpecialToken]
override def equals(obj: Any): Boolean = obj match {
case obj: SpecialToken => obj.content == content
case _ => false
}
override def toString: String = content
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy