com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.embeddings
import com.johnsnowlabs.ml.tensorflow.{
ReadTensorflowModel,
TensorflowUSE,
TensorflowWrapper,
WriteTensorflowModel
}
import com.johnsnowlabs.ml.util.LoadExternalModel.{modelSanityCheck, notSupportedEngineError}
import com.johnsnowlabs.ml.util.ModelEngine
import com.johnsnowlabs.nlp.AnnotatorType.{DOCUMENT, SENTENCE_EMBEDDINGS}
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.annotators.common.SentenceSplit
import com.johnsnowlabs.storage.HasStorageRef
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param.{BooleanParam, IntArrayParam, IntParam}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.{DataFrame, SparkSession}
/** The Universal Sentence Encoder encodes text into high dimensional vectors that can be used for
* text classification, semantic similarity, clustering and other natural language tasks.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val useEmbeddings = UniversalSentenceEncoder.pretrained()
* .setInputCols("sentence")
* .setOutputCol("sentence_embeddings")
* }}}
* The default model is `"tfhub_use"`, if no name is provided. For available pretrained models
* please see the [[https://nlp.johnsnowlabs.com/models?task=Embeddings Models Hub]].
*
* For extended examples of usage, see the
* [[https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/3.SparkNLP_Pretrained_Models.ipynb Spark NLP Workshop]]
* and the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/UniversalSentenceEncoderTestSpec.scala UniversalSentenceEncoderTestSpec]].
*
* '''References:'''
*
* [[https://arxiv.org/abs/1803.11175 Universal Sentence Encoder]]
*
* [[https://tfhub.dev/google/universal-sentence-encoder/2]]
*
* '''Paper abstract:'''
*
* ''We present models for encoding sentences into embedding vectors that specifically target
* transfer learning to other NLP tasks. The models are efficient and result in accurate
* performance on diverse transfer tasks. Two variants of the encoding models allow for
* trade-offs between accuracy and compute resources. For both variants, we investigate and
* report the relationship between model complexity, resource consumption, the availability of
* transfer task training data, and task performance. Comparisons are made with baselines that
* use word level transfer learning via pretrained word embeddings as well as baselines do not
* use any transfer learning. We find that transfer learning using sentence embeddings tends to
* outperform word level transfer. With transfer learning via sentence embeddings, we observe
* surprisingly good performance with minimal amounts of supervised training data for a transfer
* task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at
* detecting model bias. Our pre-trained sentence encoding models are made freely available for
* download and on TF Hub.''
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotator.SentenceDetector
* import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder
* import com.johnsnowlabs.nlp.EmbeddingsFinisher
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val sentence = new SentenceDetector()
* .setInputCols("document")
* .setOutputCol("sentence")
*
* val embeddings = UniversalSentenceEncoder.pretrained()
* .setInputCols("sentence")
* .setOutputCol("sentence_embeddings")
*
* val embeddingsFinisher = new EmbeddingsFinisher()
* .setInputCols("sentence_embeddings")
* .setOutputCols("finished_embeddings")
* .setOutputAsVector(true)
* .setCleanAnnotations(false)
*
* val pipeline = new Pipeline()
* .setStages(Array(
* documentAssembler,
* sentence,
* embeddings,
* embeddingsFinisher
* ))
*
* val data = Seq("This is a sentence.").toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
* +--------------------------------------------------------------------------------+
* | result|
* +--------------------------------------------------------------------------------+
* |[0.04616805538535118,0.022307956591248512,-0.044395286589860916,-0.0016493503...|
* +--------------------------------------------------------------------------------+
* }}}
*
* @see
* [[https://nlp.johnsnowlabs.com/docs/en/annotators Annotators Main Page]] for a list of
* transformer based embeddings
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class UniversalSentenceEncoder(override val uid: String)
extends AnnotatorModel[UniversalSentenceEncoder]
with HasBatchedAnnotate[UniversalSentenceEncoder]
with HasEmbeddingsProperties
with HasStorageRef
with WriteTensorflowModel
with HasEngine {
/** Annotator reference id. Used to identify elements in metadata or to refer to this annotator
* type
*/
def this() = this(Identifiable.randomUID("UNIVERSAL_SENTENCE_ENCODER"))
/** Output annotator type : SENTENCE_EMBEDDINGS
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = SENTENCE_EMBEDDINGS
/** Input annotator type : DOCUMENT
*
* @group anno
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(DOCUMENT)
/** Number of embedding dimensions (Default: `512`)
*
* @group param
*/
override val dimension = new IntParam(this, "dimension", "Number of embedding dimensions")
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group param
*/
val configProtoBytes = new IntArrayParam(
this,
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")
/** Whether to load SentencePiece ops file which is required only by multi-lingual models
* (Default: `false`). This is not changeable after it's set with a pretrained model nor it is
* compatible with Windows.
*
* @group param
*/
val loadSP = new BooleanParam(
this,
"loadSP",
"Whether to load SentencePiece ops file which is required only by multi-lingual models. " +
"This is not changeable after it's set with a pretrained model nor it is compatible with Windows.")
/** Whether to load SentencePiece ops file which is required only by multi-lingual models.
*
* @group setParam
*/
def setLoadSP(value: Boolean): this.type = {
if (get(loadSP).isEmpty)
set(this.loadSP, value)
this
}
/** Whether to load SentencePiece ops file which is required only by multi-lingual models.
*
* @group getParam
*/
def getLoadSP: Boolean = $(loadSP)
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group setParam
*/
def setConfigProtoBytes(bytes: Array[Int]): UniversalSentenceEncoder.this.type =
set(this.configProtoBytes, bytes)
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group getParam
*/
def getConfigProtoBytes: Option[Array[Byte]] =
get(this.configProtoBytes).map(_.map(_.toByte))
private var _model: Option[Broadcast[TensorflowUSE]] = None
/** @group getParam */
def getModelIfNotSet: TensorflowUSE = _model.get.value
/** @group setParam */
def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): this.type = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new TensorflowUSE(
tensorflow,
configProtoBytes = getConfigProtoBytes,
loadSP = getLoadSP)))
}
this
}
setDefault(dimension -> 512, storageRef -> "tfhub_use", loadSP -> false, batchSize -> 2)
/** Takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
// Unpack annotations and zip each sentence to the index or the row it belongs to
val sentencesWithRow = batchedAnnotations.zipWithIndex
.flatMap { case (annotations, i) => SentenceSplit.unpack(annotations).map(x => (x, i)) }
val nonEmptySentences = sentencesWithRow.map(_._1).filter(_.content.nonEmpty)
val allAnnotations =
if (nonEmptySentences.nonEmpty)
getModelIfNotSet.predict(nonEmptySentences, $(batchSize))
else Seq.empty[Annotation]
// Group resulting annotations by rows. If there are not sentences in a given row, return empty sequence
batchedAnnotations.indices.map(rowIndex => {
val rowAnnotations = allAnnotations
// zip each annotation with its corresponding row index
.zip(sentencesWithRow)
// select the sentences belonging to the current row
.filter(_._2._2 == rowIndex)
// leave the annotation only
.map(_._1)
if (rowAnnotations.nonEmpty)
rowAnnotations
else
Seq.empty[Annotation]
})
}
override protected def afterAnnotate(dataset: DataFrame): DataFrame = {
dataset.withColumn(
getOutputCol,
wrapSentenceEmbeddingsMetadata(
dataset.col(getOutputCol),
$(dimension),
Some($(storageRef))))
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
writeTensorflowModelV2(
path,
spark,
getModelIfNotSet.tensorflow,
"_use",
UniversalSentenceEncoder.tfFile,
configProtoBytes = getConfigProtoBytes)
}
}
trait ReadablePretrainedUSEModel
extends ParamsAndFeaturesReadable[UniversalSentenceEncoder]
with HasPretrained[UniversalSentenceEncoder] {
override val defaultModelName: Some[String] = Some("tfhub_use")
/** Java compliant-overrides */
override def pretrained(): UniversalSentenceEncoder = super.pretrained()
override def pretrained(name: String): UniversalSentenceEncoder = super.pretrained(name)
override def pretrained(name: String, lang: String): UniversalSentenceEncoder =
super.pretrained(name, lang)
override def pretrained(
name: String,
lang: String,
remoteLoc: String): UniversalSentenceEncoder =
super.pretrained(name, lang, remoteLoc)
}
trait ReadUSEDLModel extends ReadTensorflowModel {
this: ParamsAndFeaturesReadable[UniversalSentenceEncoder] =>
/*Needs to point to an actual folder rather than a .pb file*/
override val tfFile: String = "use_tensorflow"
def readTensorflow(
instance: UniversalSentenceEncoder,
path: String,
spark: SparkSession): Unit = {
val loadSP = instance.getLoadSP
val tf =
readTensorflowWithSPModel(path, spark, "_use_tf", initAllTables = true, loadSP = loadSP)
instance.setModelIfNotSet(spark, tf)
}
addReader(readTensorflow)
def loadSavedModel(
modelPath: String,
spark: SparkSession,
loadSP: Boolean = false): UniversalSentenceEncoder = {
val (localModelPath, detectedEngine) = modelSanityCheck(modelPath)
/*Universal parameters for all engines*/
val annotatorModel = new UniversalSentenceEncoder()
.setLoadSP(loadSP)
annotatorModel.set(annotatorModel.engine, detectedEngine)
detectedEngine match {
case ModelEngine.tensorflow =>
val wrapper =
TensorflowWrapper.readWithSP(
localModelPath,
zipped = false,
useBundle = true,
tags = Array("serve"),
initAllTables = true,
loadSP = loadSP)
/** the order of setSignatures is important if we use getSignatures inside
* setModelIfNotSet
*/
annotatorModel
.setModelIfNotSet(spark, wrapper)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
/** This is the companion object of [[UniversalSentenceEncoder]]. Please refer to that class for
* the documentation.
*/
object UniversalSentenceEncoder extends ReadablePretrainedUSEModel with ReadUSEDLModel
© 2015 - 2024 Weber Informatics LLC | Privacy Policy