com.johnsnowlabs.nlp.embeddings.XlmRoBertaSentenceEmbeddings.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.embeddings
import com.johnsnowlabs.ml.tensorflow._
import com.johnsnowlabs.ml.tensorflow.sentencepiece._
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadSentencePieceAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.ModelEngine
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.nlp.annotators.common._
import com.johnsnowlabs.nlp.serialization.MapFeature
import com.johnsnowlabs.storage.HasStorageRef
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param.{IntArrayParam, IntParam}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.{DataFrame, SparkSession}
/** Sentence-level embeddings using XLM-RoBERTa. The XLM-RoBERTa model was proposed in
* [[https://arxiv.org/abs/1911.02116 Unsupervised Cross-lingual Representation Learning at Scale]]
* by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
* Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based
* on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model,
* trained on 2.5TB of filtered CommonCrawl data.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val embeddings = XlmRoBertaSentenceEmbeddings.pretrained()
* .setInputCols("document")
* .setOutputCol("sentence_embeddings")
* }}}
* The default model is `"sent_xlm_roberta_base"`, default language is `"xx"` (meaning
* multi-lingual), if no values are provided. For available pretrained models please see the
* [[https://nlp.johnsnowlabs.com/models?task=Embeddings Models Hub]].
*
* To see which models are compatible and how to import them see
* [[https://github.com/JohnSnowLabs/spark-nlp/discussions/5669]] and to see more extended
* examples, see
* [[https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/XlmRoBertaSentenceEmbeddingsTestSpec.scala XlmRoBertaSentenceEmbeddingsTestSpec]].
*
* '''Paper Abstract:'''
*
* ''This paper shows that pretraining multilingual language models at scale leads to significant
* performance gains for a wide range of cross-lingual transfer tasks. We train a
* Transformer-based masked language model on one hundred languages, using more than two
* terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms
* multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average
* accuracy on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R
* performs particularly well on low-resource languages, improving 11.8% in XNLI accuracy for
* Swahili and 9.2% for Urdu over the previous XLM model. We also present a detailed empirical
* evaluation of the key factors that are required to achieve these gains, including the
* trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high
* and low resource languages at scale. Finally, we show, for the first time, the possibility of
* multilingual modeling without sacrificing per-language performance; XLM-Ris very competitive
* with strong monolingual models on the GLUE and XNLI benchmarks. We will make XLM-R code, data,
* and models publicly available.''
*
* '''Tips:'''
* - XLM-RoBERTa is a multilingual model trained on 100 different languages. Unlike some XLM
* multilingual models, it does not require '''lang''' parameter to understand which language
* is used, and should be able to determine the correct language from the input ids.
* - This implementation is the same as RoBERTa. Refer to the [[RoBertaEmbeddings]] for usage
* examples as well as the information relative to the inputs and outputs.
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base._
* import com.johnsnowlabs.nlp.annotator._
* import com.johnsnowlabs.nlp.EmbeddingsFinisher
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val tokenizer = new Tokenizer()
* .setInputCols(Array("document"))
* .setOutputCol("token")
*
* val sentenceEmbeddings = XlmRoBertaSentenceEmbeddings.pretrained()
* .setInputCols("document")
* .setOutputCol("sentence_embeddings")
* .setCaseSensitive(true)
*
* // you can either use the output to train ClassifierDL, SentimentDL, or MultiClassifierDL
* // or you can use EmbeddingsFinisher to prepare the results for Spark ML functions
*
* val embeddingsFinisher = new EmbeddingsFinisher()
* .setInputCols("sentence_embeddings")
* .setOutputCols("finished_embeddings")
* .setOutputAsVector(true)
* .setCleanAnnotations(false)
*
* val pipeline = new Pipeline()
* .setStages(Array(
* documentAssembler,
* tokenizer,
* sentenceEmbeddings,
* embeddingsFinisher
* ))
*
* val data = Seq("This is a sentence.").toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
* +--------------------------------------------------------------------------------+
* | result|
* +--------------------------------------------------------------------------------+
* |[-0.05969233065843582,-0.030789051204919815,0.04443822056055069,0.09564960747...|
* |[-0.038839809596538544,0.011712731793522835,0.019954433664679527,0.0667808502...|
* |[-0.03952755779027939,-0.03455188870429993,0.019103847444057465,0.04311436787...|
* |[-0.09579929709434509,0.02494969218969345,-0.014753809198737144,0.10259044915...|
* |[0.004710011184215546,-0.022148698568344116,0.011723337695002556,-0.013356896...|
* +--------------------------------------------------------------------------------+
* }}}
*
* @see
* [[XlmRoBertaEmbeddings]] for token-level embeddings
* @see
* [[https://nlp.johnsnowlabs.com/docs/en/annotators Annotators Main Page]] for a list of
* transformer based embeddings
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class XlmRoBertaSentenceEmbeddings(override val uid: String)
extends AnnotatorModel[XlmRoBertaSentenceEmbeddings]
with HasBatchedAnnotate[XlmRoBertaSentenceEmbeddings]
with WriteTensorflowModel
with WriteSentencePieceModel
with HasEmbeddingsProperties
with HasStorageRef
with HasCaseSensitiveProperties
with HasEngine {
/** Annotator reference id. Used to identify elements in metadata or to refer to this annotator
* type
*/
def this() = this(Identifiable.randomUID("XLM_ROBERTA_EMBEDDINGS"))
/** ConfigProto from tensorflow, serialized into byte array. Get with
* config_proto.SerializeToString()
*
* @group param
*/
val configProtoBytes = new IntArrayParam(
this,
"configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()")
/** @group setParam */
def setConfigProtoBytes(bytes: Array[Int]): XlmRoBertaSentenceEmbeddings.this.type =
set(this.configProtoBytes, bytes)
/** @group getParam */
def getConfigProtoBytes: Option[Array[Byte]] = get(this.configProtoBytes).map(_.map(_.toByte))
/** Max sentence length to process (Default: `128`)
*
* @group param
*/
val maxSentenceLength =
new IntParam(this, "maxSentenceLength", "Max sentence length to process")
/** @group setParam */
def setMaxSentenceLength(value: Int): this.type = {
require(
value <= 512,
"XLM-RoBERTa models do not support sequences longer than 512 because of trainable positional embeddings.")
require(value >= 1, "The maxSentenceLength must be at least 1")
set(maxSentenceLength, value)
this
}
/** @group getParam */
def getMaxSentenceLength: Int = $(maxSentenceLength)
/** It contains TF model signatures for the laded saved model
*
* @group param
*/
val signatures = new MapFeature[String, String](model = this, name = "signatures")
/** @group setParam */
def setSignatures(value: Map[String, String]): this.type = {
if (get(signatures).isEmpty)
set(signatures, value)
this
}
/** @group getParam */
def getSignatures: Option[Map[String, String]] = get(this.signatures)
private var _model: Option[Broadcast[TensorflowXlmRoberta]] = None
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
tensorflowWrapper: TensorflowWrapper,
spp: SentencePieceWrapper): XlmRoBertaSentenceEmbeddings = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new TensorflowXlmRoberta(
tensorflowWrapper,
spp,
$(caseSensitive),
configProtoBytes = getConfigProtoBytes,
signatures = getSignatures)))
}
this
}
/** @group getParam */
def getModelIfNotSet: TensorflowXlmRoberta = _model.get.value
/** Set Embeddings dimensions for the XLM-RoBERTa model. Only possible to set this when the
* first time is saved dimension is not changeable, it comes from XLM-RoBERTa config file.
*
* @group setParam
*/
override def setDimension(value: Int): this.type = {
if (get(dimension).isEmpty)
set(this.dimension, value)
this
}
/** Whether to lowercase tokens or not
*
* @group setParam
*/
override def setCaseSensitive(value: Boolean): this.type = {
if (get(caseSensitive).isEmpty)
set(this.caseSensitive, value)
this
}
setDefault(dimension -> 768, batchSize -> 8, maxSentenceLength -> 128, caseSensitive -> true)
/** takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
/*Return empty if the real sentences are empty*/
batchedAnnotations.map(annotations => {
val sentences = SentenceSplit.unpack(annotations).toArray
if (sentences.nonEmpty) {
getModelIfNotSet.predictSequence(sentences, $(batchSize), $(maxSentenceLength))
} else {
Seq.empty[Annotation]
}
})
}
override protected def afterAnnotate(dataset: DataFrame): DataFrame = {
dataset.withColumn(
getOutputCol,
wrapSentenceEmbeddingsMetadata(
dataset.col(getOutputCol),
$(dimension),
Some($(storageRef))))
}
/** Input Annotator Types: DOCUMENT, TOKEN
*
* @group anno
*/
override val inputAnnotatorTypes: Array[String] = Array(AnnotatorType.DOCUMENT)
/** Output Annotator Types: WORD_EMBEDDINGS
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
writeTensorflowModelV2(
path,
spark,
getModelIfNotSet.tensorflowWrapper,
"_xlmroberta",
XlmRoBertaSentenceEmbeddings.tfFile,
configProtoBytes = getConfigProtoBytes)
writeSentencePieceModel(
path,
spark,
getModelIfNotSet.spp,
"_xlmroberta",
XlmRoBertaSentenceEmbeddings.sppFile)
}
}
trait ReadablePretrainedXlmRobertaSentenceModel
extends ParamsAndFeaturesReadable[XlmRoBertaSentenceEmbeddings]
with HasPretrained[XlmRoBertaSentenceEmbeddings] {
override val defaultModelName: Some[String] = Some("sent_xlm_roberta_base")
override val defaultLang: String = "xx"
/** Java compliant-overrides */
override def pretrained(): XlmRoBertaSentenceEmbeddings = super.pretrained()
override def pretrained(name: String): XlmRoBertaSentenceEmbeddings = super.pretrained(name)
override def pretrained(name: String, lang: String): XlmRoBertaSentenceEmbeddings =
super.pretrained(name, lang)
override def pretrained(
name: String,
lang: String,
remoteLoc: String): XlmRoBertaSentenceEmbeddings = super.pretrained(name, lang, remoteLoc)
}
trait ReadXlmRobertaSentenceDLModel extends ReadTensorflowModel with ReadSentencePieceModel {
this: ParamsAndFeaturesReadable[XlmRoBertaSentenceEmbeddings] =>
override val tfFile: String = "xlmroberta_tensorflow"
override val sppFile: String = "xlmroberta_spp"
def readTensorflow(
instance: XlmRoBertaSentenceEmbeddings,
path: String,
spark: SparkSession): Unit = {
val tf = readTensorflowModel(path, spark, "_xlmroberta_tf", initAllTables = false)
val spp = readSentencePieceModel(path, spark, "_xlmroberta_spp", sppFile)
instance.setModelIfNotSet(spark, tf, spp)
}
addReader(readTensorflow)
def loadSavedModel(modelPath: String, spark: SparkSession): XlmRoBertaSentenceEmbeddings = {
val (localModelPath, detectedEngine) = modelSanityCheck(modelPath)
val spModel = loadSentencePieceAsset(localModelPath, "sentencepiece.bpe.model")
/*Universal parameters for all engines*/
val annotatorModel = new XlmRoBertaSentenceEmbeddings()
annotatorModel.set(annotatorModel.engine, detectedEngine)
detectedEngine match {
case ModelEngine.tensorflow =>
val (wrapper, signatures) =
TensorflowWrapper.read(localModelPath, zipped = false, useBundle = true)
val _signatures = signatures match {
case Some(s) => s
case None => throw new Exception("Cannot load signature definitions from model!")
}
/** the order of setSignatures is important if we use getSignatures inside
* setModelIfNotSet
*/
annotatorModel
.setSignatures(_signatures)
.setModelIfNotSet(spark, wrapper, spModel)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
object XlmRoBertaSentenceEmbeddings
extends ReadablePretrainedXlmRobertaSentenceModel
with ReadXlmRobertaSentenceDLModel
© 2015 - 2024 Weber Informatics LLC | Privacy Policy