com.johnsnowlabs.nlp.training.POS.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.training
import com.johnsnowlabs.nlp.{Annotation, AnnotatorType}
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.{col, concat_ws, udf}
import org.apache.spark.sql.types.MetadataBuilder
import org.apache.spark.sql.{Column, DataFrame, SparkSession}
import scala.collection.mutable.ArrayBuffer
private case class TaggedToken(token: String, tag: String)
private case class TaggedDocument(sentence: String, taggedTokens: Array[TaggedToken])
private case class Annotations(text: String, document: Array[Annotation], pos: Array[Annotation])
/** Helper class for creating DataFrames for training a part-of-speech tagger.
*
* The dataset needs to consist of sentences on each line, where each word is delimited with its
* respective tag:
*
* {{{
* Pierre|NNP Vinken|NNP ,|, 61|CD years|NNS old|JJ ,|, will|MD join|VB the|DT board|NN as|IN a|DT nonexecutive|JJ director|NN Nov.|NNP 29|CD .|.
* }}}
*
* The sentence can then be parsed with [[readDataset]] into a column with annotations of type
* `POS`.
*
* ==Example==
* In this example, the file `test-training.txt` has the content of the sentence above.
* {{{
* import com.johnsnowlabs.nlp.training.POS
*
* val pos = POS()
* val path = "src/test/resources/anc-pos-corpus-small/test-training.txt"
* val posDf = pos.readDataset(spark, path, "|", "tags")
*
* posDf.selectExpr("explode(tags) as tags").show(false)
* +---------------------------------------------+
* |tags |
* +---------------------------------------------+
* |[pos, 0, 5, NNP, [word -> Pierre], []] |
* |[pos, 7, 12, NNP, [word -> Vinken], []] |
* |[pos, 14, 14, ,, [word -> ,], []] |
* |[pos, 16, 17, CD, [word -> 61], []] |
* |[pos, 19, 23, NNS, [word -> years], []] |
* |[pos, 25, 27, JJ, [word -> old], []] |
* |[pos, 29, 29, ,, [word -> ,], []] |
* |[pos, 31, 34, MD, [word -> will], []] |
* |[pos, 36, 39, VB, [word -> join], []] |
* |[pos, 41, 43, DT, [word -> the], []] |
* |[pos, 45, 49, NN, [word -> board], []] |
* |[pos, 51, 52, IN, [word -> as], []] |
* |[pos, 47, 47, DT, [word -> a], []] |
* |[pos, 56, 67, JJ, [word -> nonexecutive], []]|
* |[pos, 69, 76, NN, [word -> director], []] |
* |[pos, 78, 81, NNP, [word -> Nov.], []] |
* |[pos, 83, 84, CD, [word -> 29], []] |
* |[pos, 81, 81, ., [word -> .], []] |
* +---------------------------------------------+
* }}}
*/
case class POS() {
/*
* Add Metadata annotationType to output DataFrame
* NOTE: This should be replaced by an existing function when it's accessible in next release
* */
def wrapColumnMetadata(col: Column, annotatorType: String, outPutColName: String): Column = {
val metadataBuilder: MetadataBuilder = new MetadataBuilder()
metadataBuilder.putString("annotatorType", annotatorType)
col.as(outPutColName, metadataBuilder.build)
}
/*
* This section is to help users to convert text files in token|tag style into DataFrame
* with POS Annotation for training PerceptronApproach
* */
private def createDocumentAnnotation(sentence: String) = {
Array(
Annotation(
AnnotatorType.DOCUMENT,
0,
sentence.length - 1,
sentence,
Map.empty[String, String]))
}
private def createPosAnnotation(sentence: String, taggedTokens: Array[TaggedToken]) = {
var lastBegin = 0
taggedTokens.map { case TaggedToken(token, tag) =>
val tokenBegin = sentence.indexOf(token, lastBegin)
val a = Annotation(
AnnotatorType.POS,
tokenBegin,
tokenBegin + token.length - 1,
tag,
Map("word" -> token))
lastBegin += token.length
a
}
}
private def lineToTaggedDocument(line: String, delimiter: String) = {
/*
TODO: improve the performance of regex group
val splitted = line.replaceAll(s"(?:${delimiter.head}\\w+)+(\\s)", "$0##$1").split("##").map(_.trim)
*/
val splitted = line.split(" ").map(_.trim)
val tokenTags = splitted.flatMap(token => {
val tokenTag = token.split(delimiter.head).map(_.trim)
if (tokenTag.exists(_.isEmpty) || tokenTag.length != 2)
// Ignore broken pairs or pairs with delimiter char
None
else
Some(TaggedToken(tokenTag.head, tokenTag.last))
})
TaggedDocument(tokenTags.map(_.token).mkString(" "), tokenTags)
}
/** Reads the provided dataset file with given parameters and returns a DataFrame ready to for
* training a part-of-speech tagger.
*
* @param sparkSession
* Current Spark sessions
* @param path
* Path to the resource
* @param delimiter
* Delimiter used to separate word from their tag in the text
* @param outputPosCol
* Name for the output column of the part-of-tags
* @param outputDocumentCol
* Name for the [[com.johnsnowlabs.nlp.base.DocumentAssembler DocumentAssembler]] column
* @param outputTextCol
* Name for the column of the raw text
* @return
* DataFrame of parsed text
*/
def readDataset(
sparkSession: SparkSession,
path: String,
delimiter: String = "|",
outputPosCol: String = "tags",
outputDocumentCol: String = "document",
outputTextCol: String = "text"): DataFrame = {
import sparkSession.implicits._
require(delimiter.length == 1, s"Delimiter must be one character long. Received $delimiter")
val dataset = sparkSession.read
.textFile(path)
.filter(_.nonEmpty)
.map(line => lineToTaggedDocument(line, delimiter))
.map { case TaggedDocument(sentence, taggedTokens) =>
Annotations(
sentence,
createDocumentAnnotation(sentence),
createPosAnnotation(sentence, taggedTokens))
}
dataset
.withColumnRenamed("text", outputTextCol)
.withColumn(
outputDocumentCol,
wrapColumnMetadata(dataset("document"), AnnotatorType.DOCUMENT, outputDocumentCol))
.withColumn(
outputPosCol,
wrapColumnMetadata(dataset("pos"), AnnotatorType.POS, outputPosCol))
.select(outputTextCol, outputDocumentCol, outputPosCol)
}
// For testing purposes when there is an array of tokens and an array of labels
def readFromDataframe(
posDataframe: DataFrame,
tokensCol: String = "tokens",
labelsCol: String = "labels",
outPutDocColName: String = "text",
outPutPosColName: String = "tags"): DataFrame = {
def annotatorType: String = AnnotatorType.POS
def annotateTokensTags: UserDefinedFunction = udf {
(tokens: Seq[String], tags: Seq[String], text: String) =>
lazy val strTokens = tokens.mkString("#")
lazy val strPosTags = tags.mkString("#")
require(
tokens.length == tags.length,
s"Cannot train from DataFrame since there" +
s" is a row with different amount of tags and tokens:\n$strTokens\n$strPosTags")
val tokenTagAnnotation: ArrayBuffer[Annotation] = ArrayBuffer()
def annotatorType: String = AnnotatorType.POS
var lastIndex = 0
for ((e, i) <- tokens.zipWithIndex) {
val beginOfToken = text.indexOfSlice(e, lastIndex)
val endOfToken = (beginOfToken + e.length) - 1
val fullPOSAnnotatorStruct = new Annotation(
annotatorType = annotatorType,
begin = beginOfToken,
end = endOfToken,
result = tags(i),
metadata = Map("word" -> e))
tokenTagAnnotation += fullPOSAnnotatorStruct
lastIndex = text.indexOfSlice(e, lastIndex)
}
tokenTagAnnotation
}
val tempDataFrame = posDataframe
.withColumn(outPutDocColName, concat_ws(" ", col(tokensCol)))
.withColumn(
outPutPosColName,
annotateTokensTags(col(tokensCol), col(labelsCol), col(outPutDocColName)))
.drop(tokensCol, labelsCol)
tempDataFrame.withColumn(
outPutPosColName,
wrapColumnMetadata(tempDataFrame(outPutPosColName), annotatorType, outPutPosColName))
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy