Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.ml.openvino
import com.johnsnowlabs.ml.util.LoadExternalModel.notSupportedEngineError
import com.johnsnowlabs.ml.util.{LoadExternalModel, ONNX, Openvino, TensorFlow}
import com.johnsnowlabs.util.{FileHelper, ZipArchiveUtil}
import org.apache.commons.io.{FileUtils, FilenameUtils}
import org.apache.spark.SparkFiles
import org.apache.spark.sql.SparkSession
import org.intel.openvino.Openvino.save_model
import org.intel.openvino.{CompiledModel, Core, Model}
import org.slf4j.{Logger, LoggerFactory}
import java.io.File
import java.nio.file.{Files, Path, Paths}
import java.util.UUID
import scala.collection.JavaConverters._
class OpenvinoWrapper(var modelName: Option[String] = None) extends Serializable {
/** For Deserialization */
def this() = {
this(null)
}
// Important for serialization on none-kyro serializers
@transient private var compiledModel: CompiledModel = _
def getCompiledModel(
properties: Map[String, String] = Map.empty[String, String]): CompiledModel =
this.synchronized {
if (compiledModel == null) {
val modelPath = SparkFiles.get(s"${modelName.get}.xml")
compiledModel =
OpenvinoWrapper.withSafeOvModelLoader(Some(modelPath), properties = properties)
}
compiledModel
}
def saveToFile(file: String): Unit = {
val tmpFolder = Files
.createTempDirectory(UUID.randomUUID().toString.takeRight(12) + "_ov")
.toAbsolutePath
.toString
val xmlFile: String = s"${modelName.get}.xml"
val binFile: String = s"${modelName.get}.bin"
FileUtils.copyFile(new File(SparkFiles.get(xmlFile)), Paths.get(tmpFolder, xmlFile).toFile)
FileUtils.copyFile(new File(SparkFiles.get(binFile)), Paths.get(tmpFolder, binFile).toFile)
ZipArchiveUtil.zip(tmpFolder, file)
FileHelper.delete(tmpFolder)
}
}
/** Companion object */
object OpenvinoWrapper {
private val logger: Logger = LoggerFactory.getLogger(this.getClass.toString)
private[OpenvinoWrapper] val core: Core =
try {
new Core
} catch {
case e: UnsatisfiedLinkError =>
logger.error(
"Could not initialize OpenVINO Core. Please make sure the jsl-openvino JAR is loaded and Intel oneTBB is installed.\n" +
"(See https://www.intel.com/content/www/us/en/docs/onetbb/get-started-guide/2021-12/overview.html)")
throw e
}
private val ModelSuffix = "_ov_model"
/** Read the model from the given path, unpack if zipped, and return the loaded OpenvinoWrapper.
* If source model is not in OpenVINO format, it is converted first.
*
* @param sparkSession
* The Spark Session
* @param modelPath
* Path to the model
* @param modelName
* The model filename
* @param zipped
* Unpack zipped model
* @param useBundle
* Load exported model
* @param detectedEngine
* The source model format
* @param properties
* Properties for this load operation
* @return
* The resulting OpenVINO model wrapper
*/
def read(
sparkSession: SparkSession,
modelPath: String,
modelName: String = Openvino.ovModel,
zipped: Boolean = true,
useBundle: Boolean = false,
detectedEngine: String = Openvino.name,
properties: Map[String, String] = Map.empty,
ovFileSuffix: Option[String] = None): OpenvinoWrapper = {
val tmpFolder = Files
.createTempDirectory(UUID.randomUUID().toString.takeRight(12) + ModelSuffix)
.toAbsolutePath
.toString
val randomSuffix = generateRandomSuffix(ovFileSuffix)
val folder =
if (zipped)
ZipArchiveUtil.unzip(new File(modelPath), Some(tmpFolder), randomSuffix)
else
modelPath
val (ovModelPath, ovWeightsPath) =
detectedEngine match {
case TensorFlow.name =>
convertToOpenvinoFormat(folder, tmpFolder)
case ONNX.name =>
if (useBundle)
convertToOpenvinoFormat(Paths.get(folder, ONNX.modelName).toString, tmpFolder)
else
convertToOpenvinoFormat(Paths.get(folder, s"$modelName.onnx").toString, tmpFolder)
case Openvino.name =>
if (useBundle)
(Paths.get(folder, s"$modelName.xml"), Paths.get(folder, s"$modelName.bin"))
else {
val ovModelName = FilenameUtils.getBaseName(new File(folder).list().head)
(Paths.get(folder, s"${ovModelName}.xml"), Paths.get(folder, s"${ovModelName}.bin"))
}
case _ =>
throw new Exception(notSupportedEngineError)
}
sparkSession.sparkContext.addFile(ovModelPath.toString)
sparkSession.sparkContext.addFile(ovWeightsPath.toString)
val ovFileName = Some(FilenameUtils.getBaseName(ovModelPath.toFile.getName))
val openvinoWrapper = new OpenvinoWrapper(ovFileName)
val compiledModel: CompiledModel =
withSafeOvModelLoader(Some(ovModelPath.toString), properties = properties)
openvinoWrapper.compiledModel = compiledModel
openvinoWrapper
}
private def generateRandomSuffix(fileSuffix: Option[String]): Option[String] = {
val randomSuffix = Some(LoadExternalModel.generateRandomString(10))
Some(s"${randomSuffix.get}${fileSuffix.getOrElse("")}")
}
/** Convert the model at srcPath to OpenVINO IR Format and export to exportPath.
*
* @param srcPath
* Path to the source model
* @param exportPath
* Path to export converted model to
* @param compressToFp16
* Whether to perform weight compression to FP16
* @return
* Paths to the exported XML and BIN files
*/
def convertToOpenvinoFormat(
srcPath: String,
exportPath: String,
compressToFp16: Boolean = false): (Path, Path) = {
logger.debug(s"Converting model from ${srcPath}, compresToFp16 = ${compressToFp16}")
val model: Model = core.read_model(srcPath)
val ovXmlPath = Paths.get(exportPath, s"${Openvino.ovModel}.xml")
val ovBinPath = Paths.get(exportPath, s"${Openvino.ovModel}.bin")
save_model(model, ovXmlPath.toAbsolutePath.toString, compressToFp16)
(ovXmlPath, ovBinPath)
}
/** Prepare the model for inference by compiling into a device-specific graph representation.
* Returns the compiled model object.
*
* @param modelPath
* Optional path to the model directory
* @param device
* Device to compile the model to
* @param properties
* Properties for this load operation
* @return
* Object representing the compiled model
*/
def withSafeOvModelLoader(
modelPath: Option[String] = None,
device: String = "CPU",
properties: Map[String, String]): CompiledModel = {
// TODO: Let user pick inference device through Spark Config
logger.info(s"Compiling OpenVINO model to device: $device")
val compiledModel = core.compile_model(modelPath.get, device, properties.asJava)
compiledModel
}
case class EncoderDecoderWrappers(
encoder: OpenvinoWrapper,
decoder: OpenvinoWrapper,
decoderWithPast: OpenvinoWrapper)
case class DecoderWrappers(decoder: OpenvinoWrapper)
case class EncoderDecoderWithoutPastWrappers(encoder: OpenvinoWrapper, decoder: OpenvinoWrapper)
}