Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import scala.collection.Map
/** Represents [[ImageAssembler]]'s output parts and their details
*
* @param annotatorType
* Image annotator type
* @param origin
* The origin of the image
* @param height
* Height of the image in pixels
* @param width
* Width of the image in pixels
* @param nChannels
* Number of image channels
* @param mode
* OpenCV-compatible type
* @param result
* Result of the annotation
* @param metadata
* Metadata of the annotation
*/
case class AnnotationImage(
annotatorType: String,
origin: String,
height: Int,
width: Int,
nChannels: Int,
mode: Int,
result: Array[Byte],
metadata: Map[String, String])
extends IAnnotation {
override def equals(obj: Any): Boolean = {
obj match {
case annotation: AnnotationImage =>
this.annotatorType == annotation.annotatorType &&
this.origin == annotation.origin &&
this.height == annotation.height &&
this.width == annotation.width &&
this.nChannels == annotation.nChannels &&
this.mode == annotation.mode &&
this.result.sameElements(annotation.result) &&
this.metadata == annotation.metadata
case _ => false
}
}
def getAnnotatorType: String = {
annotatorType
}
def getOrigin: String = {
origin
}
def getHeight: Int = {
height
}
def getWidth: Int = {
width
}
def getChannels: Int = {
nChannels
}
def getMode: Int = {
mode
}
def getMetadata: Map[String, String] = {
metadata
}
}
object AnnotationImage {
case class AnnotationContainer(__annotation: Array[AnnotationImage])
/** This is spark type of an annotation representing its metadata shape */
val dataType = new StructType(
Array(
StructField("annotatorType", StringType, nullable = true),
StructField("origin", StringType, nullable = false),
StructField("height", IntegerType, nullable = false),
StructField("width", IntegerType, nullable = false),
StructField("nChannels", IntegerType, nullable = false),
// OpenCV-compatible type: CV_8UC3 in most cases
StructField("mode", IntegerType, nullable = false),
// Bytes in OpenCV-compatible order: row-wise BGR in most cases
StructField("result", BinaryType, nullable = false),
StructField("metadata", MapType(StringType, StringType), nullable = true)))
val arrayType = new ArrayType(dataType, true)
case class ImageFields(
origin: String,
height: Int,
width: Int,
nChannels: Int,
mode: Int,
result: Array[Byte])
/** This method converts a [[org.apache.spark.sql.Row]] into an [[AnnotationImage]]
*
* @param row
* spark row to be converted
* @return
* AnnotationImage
*/
def apply(row: Row): AnnotationImage = {
AnnotationImage(
row.getString(0),
row.getString(1),
row.getInt(2),
row.getInt(3),
row.getInt(4),
row.getInt(5),
row.getAs[Array[Byte]](6),
row.getMap[String, String](7))
}
def apply(image: ImageFields): AnnotationImage =
AnnotationImage(
AnnotatorType.IMAGE,
origin = image.origin,
height = image.height,
width = image.width,
nChannels = image.nChannels,
mode = image.mode,
result = Array.emptyByteArray,
Map.empty[String, String])
}