Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.johnsnowlabs.nlp.GraphFinisher.scala Maven / Gradle / Ivy
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp
import com.johnsnowlabs.nlp.AnnotatorType.NODE
import com.johnsnowlabs.nlp.util.FinisherUtil
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.param.{BooleanParam, Param, ParamMap}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.{DataFrame, Dataset, Row}
/** Helper class to convert the knowledge graph from GraphExtraction into a generic format, such
* as RDF.
*
* ==Example==
* This is a continuation of the example of
* [[com.johnsnowlabs.nlp.annotators.GraphExtraction GraphExtraction]]. To see how the graph is
* extracted, see the documentation of that class.
* {{{
* import com.johnsnowlabs.nlp.GraphFinisher
*
* val graphFinisher = new GraphFinisher()
* .setInputCol("graph")
* .setOutputCol("graph_finished")
* .setOutputAsArray(false)
*
* val finishedResult = graphFinisher.transform(result)
* finishedResult.select("text", "graph_finished").show(false)
* +-----------------------------------------------------+-----------------------------------------------------------------------+
* |text |graph_finished |
* +-----------------------------------------------------+-----------------------------------------------------------------------+
* |You and John prefer the morning flight through Denver|[[(prefer,nsubj,morning), (morning,flat,flight), (flight,flat,Denver)]]|
* +-----------------------------------------------------+-----------------------------------------------------------------------+
* }}}
* @see
* [[com.johnsnowlabs.nlp.annotators.GraphExtraction GraphExtraction]] to extract the graph.
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class GraphFinisher(override val uid: String) extends Transformer {
def this() = this(Identifiable.randomUID("graph_finisher"))
/** Name of input annotation cols
*
* @group param
*/
val inputCol = new Param[String](this, "inputCol", "Name of input annotation col")
/** Name of finisher output cols
*
* @group param
*/
val outputCol =
new Param[String](this, "outputCol", "Name of finisher output col")
/** Finisher generates an Array with the results instead of string (Default: `true`)
*
* @group param
*/
val outputAsArray: BooleanParam =
new BooleanParam(this, "outputAsArray", "Finisher generates an Array with the results")
/** Whether to remove annotation columns (Default: `true`)
*
* @group param
*/
val cleanAnnotations: BooleanParam =
new BooleanParam(
this,
"cleanAnnotations",
"Whether to remove annotation columns (Default: `true`)")
/** Annotation metadata format (Default: `false`)
*
* @group param
*/
val includeMetadata: BooleanParam =
new BooleanParam(this, "includeMetadata", "Annotation metadata format (Default: `false`)")
/** Name of input annotation col
*
* @group setParam
*/
def setInputCol(value: String): this.type = set(inputCol, value)
/** Name of finisher output col
*
* @group setParam
*/
def setOutputCol(value: String): this.type = set(outputCol, value)
/** Finisher generates an Array with the results instead of string (Default: `true`)
*
* @group setParam
*/
def setOutputAsArray(value: Boolean): this.type = set(outputAsArray, value)
/** Whether to remove annotation columns (Default: `true`)
*
* @group setParam
*/
def setCleanAnnotations(value: Boolean): this.type = set(cleanAnnotations, value)
/** Annotation metadata format (Default: `false`)
*
* @group setParam
*/
def setIncludeMetadata(value: Boolean): this.type = set(includeMetadata, value)
/** Name of input annotation col
*
* @group getParam
*/
def getOutputCol: String = get(outputCol).getOrElse("finished_" + getInputCol)
/** Name of EmbeddingsFinisher output cols
*
* @group getParam
*/
def getInputCol: String = $(inputCol)
setDefault(cleanAnnotations -> true, outputAsArray -> true, includeMetadata -> false)
private val METADATA_STRUCT_INDEX = 4
override def transform(dataset: Dataset[_]): DataFrame = {
var flattenedDataSet = dataset.withColumn(
$(outputCol), {
if ($(outputAsArray)) flattenPathsAsArray(dataset.col($(inputCol)))
else flattenPaths(dataset.col($(inputCol)))
})
if ($(includeMetadata)) {
flattenedDataSet = flattenedDataSet.withColumn(
$(outputCol) + "_metadata",
flattenMetadata(dataset.col($(inputCol))))
}
FinisherUtil.cleaningAnnotations($(cleanAnnotations), flattenedDataSet)
}
private def buildPathsAsArray(metadata: Map[String, String]): List[List[List[String]]] = {
val paths = extractPaths(metadata)
val pathsInRDFFormat = paths.map { path =>
val evenPathIndices = path.indices.toList.filter(index => index % 2 == 0)
val sliceIndices = evenPathIndices zip evenPathIndices.tail
sliceIndices.map(sliceIndex => path.slice(sliceIndex._1, sliceIndex._2 + 1).toList)
}
pathsInRDFFormat
}
private def buildPaths(metadata: Map[String, String]): List[List[String]] = {
val paths = extractPaths(metadata)
val pathsInRDFFormat = paths.map { path =>
val evenPathIndices = path.indices.toList.filter(index => index % 2 == 0)
val sliceIndices = evenPathIndices zip evenPathIndices.tail
sliceIndices.map { sliceIndex =>
val node = path.slice(sliceIndex._1, sliceIndex._2 + 1)
"(" + node.mkString(",") + ")"
}
}
pathsInRDFFormat
}
private def extractPaths(metadata: Map[String, String]): List[Array[String]] = {
val paths = metadata.flatMap { case (key, value) =>
if (key.contains("path")) Some(value.split(",")) else None
}.toList
paths
}
private def flattenPathsAsArray: UserDefinedFunction = udf { annotations: Seq[Row] =>
annotations.flatMap { row =>
val metadata = row.getMap[String, String](METADATA_STRUCT_INDEX)
val pathsInRDFFormat = buildPathsAsArray(metadata.toMap)
pathsInRDFFormat
}
}
private def flattenPaths: UserDefinedFunction = udf { annotations: Seq[Row] =>
annotations.flatMap { row =>
val metadata = row.getMap[String, String](METADATA_STRUCT_INDEX)
val pathsInRDFFormat = buildPaths(metadata.toMap)
pathsInRDFFormat
}
}
private def flattenMetadata: UserDefinedFunction = udf { annotations: Seq[Row] =>
annotations.flatMap { row =>
val metadata = row.getMap[String, String](4)
val relationships = metadata.flatMap { case (key, value) =>
if (key.contains("relationship") || key.contains("entities")) Some("(" + value + ")")
else None
}.toList
relationships
}
}
def annotate(metadata: Map[String, String]): Seq[Annotation] = {
val pathsInRDFFormat = buildPaths(metadata)
val result = pathsInRDFFormat.map(pathRDF => "[" + pathRDF.mkString(",") + "]").mkString(",")
Seq(Annotation(NODE, 0, 0, result, Map()))
}
override def copy(extra: ParamMap): Transformer = super.defaultCopy(extra)
override def transformSchema(schema: StructType): StructType = {
FinisherUtil.checkIfInputColsExist(Array(getInputCol), schema)
FinisherUtil.checkIfAnnotationColumnIsSparkNLPAnnotation(schema, getInputCol)
require(
Seq(AnnotatorType.NODE).contains(schema(getInputCol).metadata.getString("annotatorType")),
s"column [$getInputCol] must be a ${AnnotatorType.NODE} type")
val metadataFields = FinisherUtil.getMetadataFields(Array(getOutputCol), $(outputAsArray))
val outputFields = schema.fields ++
FinisherUtil.getOutputFields(Array(getOutputCol), $(outputAsArray)) ++ metadataFields
val cleanFields = FinisherUtil.getCleanFields($(cleanAnnotations), outputFields)
StructType(cleanFields)
}
}