Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package com.johnsnowlabs.nlp
import com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFModel
import com.johnsnowlabs.nlp.llama.args._
import com.johnsnowlabs.nlp.llama.{InferenceParameters, ModelParameters}
import com.johnsnowlabs.nlp.serialization.StructFeature
import org.apache.spark.ml.param._
import org.slf4j.LoggerFactory
import scala.collection.mutable
import scala.jdk.CollectionConverters._
/** Contains settable parameters for the [[AutoGGUFModel]].
*
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupprio setParam 1
* @groupprio getParam 2
* @groupprio param 3
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
trait HasLlamaCppProperties {
this: ParamsAndFeaturesWritable with HasProtectedParams =>
val logger = LoggerFactory.getLogger(this.getClass)
// ---------------- MODEL PARAMETERS ----------------
/** @group param */
val nThreads =
new IntParam(this, "nThreads", "Set the number of threads to use during generation")
/** @group param */
val nThreadsDraft = new IntParam(
this,
"nThreadsDraft",
"Set the number of threads to use during draft generation")
/** @group param */
val nThreadsBatch = new IntParam(
this,
"nThreadsBatch",
"Set the number of threads to use during batch and prompt processing")
/** @group param */
val nThreadsBatchDraft = new IntParam(
this,
"nThreadsBatchDraft",
"Set the number of threads to use during batch and prompt processing")
/** @group param */
val nCtx = new IntParam(this, "nCtx", "Set the size of the prompt context")
/** @group param */
val nBatch = new IntParam(
this,
"nBatch",
"Set the logical batch size for prompt processing (must be >=32 to use BLAS)")
/** @group param */
val nUbatch = new IntParam(
this,
"nUbatch",
"Set the physical batch size for prompt processing (must be >=32 to use BLAS)")
/** @group param */
val nDraft =
new IntParam(this, "nDraft", "Set the number of tokens to draft for speculative decoding")
/** @group param */
val nChunks = new IntParam(this, "nChunks", "Set the maximal number of chunks to process")
/** @group param */
val nSequences =
new IntParam(this, "nSequences", "Set the number of sequences to decode")
/** @group param */
val pSplit = new FloatParam(this, "pSplit", "Set the speculative decoding split probability")
/** @group param */
val nGpuLayers = new IntParam(
this,
"nGpuLayers",
"Set the number of layers to store in VRAM (-1 - use default)")
/** @group param */
val nGpuLayersDraft = new IntParam(
this,
"nGpuLayersDraft",
"Set the number of layers to store in VRAM for the draft model (-1 - use default)")
/** Set how to split the model across GPUs
*
* - NONE: No GPU split
* - LAYER: Split the model across GPUs by layer
* - ROW: Split the model across GPUs by rows
*
* @group param
*/
val gpuSplitMode =
new Param[String](this, "gpuSplitMode", "Set how to split the model across GPUs")
/** @group param */
val mainGpu =
new IntParam(this, "mainGpu", "Set the main GPU that is used for scratch and small tensors.")
/** @group param */
val tensorSplit = new DoubleArrayParam(
this,
"tensorSplit",
"Set how split tensors should be distributed across GPUs")
/** @group param */
val grpAttnN = new IntParam(this, "grpAttnN", "Set the group-attention factor")
/** @group param */
val grpAttnW = new IntParam(this, "grpAttnW", "Set the group-attention width")
/** @group param */
val ropeFreqBase =
new FloatParam(this, "ropeFreqBase", "Set the RoPE base frequency, used by NTK-aware scaling")
/** @group param */
val ropeFreqScale = new FloatParam(
this,
"ropeFreqScale",
"Set the RoPE frequency scaling factor, expands context by a factor of 1/N")
/** @group param */
val yarnExtFactor =
new FloatParam(this, "yarnExtFactor", "Set the YaRN extrapolation mix factor")
/** @group param */
val yarnAttnFactor =
new FloatParam(this, "yarnAttnFactor", "Set the YaRN scale sqrt(t) or attention magnitude")
/** @group param */
val yarnBetaFast =
new FloatParam(this, "yarnBetaFast", "Set the YaRN low correction dim or beta")
/** @group param */
val yarnBetaSlow =
new FloatParam(this, "yarnBetaSlow", "Set the YaRN high correction dim or alpha")
/** @group param */
val yarnOrigCtx =
new IntParam(this, "yarnOrigCtx", "Set the YaRN original context size of model")
/** @group param */
val defragmentationThreshold =
new FloatParam(this, "defragmentationThreshold", "Set the KV cache defragmentation threshold")
/** Set optimization strategies that help on some NUMA systems (if available)
*
* Available Strategies:
*
* - DISABLED: No NUMA optimizations
* - DISTRIBUTE: Spread execution evenly over all
* - ISOLATE: Only spawn threads on CPUs on the node that execution started on
* - NUMA_CTL: Use the CPU map provided by numactl
* - MIRROR: Mirrors the model across NUMA nodes
*
* @group param
*/
val numaStrategy = new Param[String](
this,
"numaStrategy",
"Set optimization strategies that help on some NUMA systems (if available)")
/** Set the RoPE frequency scaling method, defaults to linear unless specified by the model.
*
* - UNSPECIFIED: Don't use any scaling
* - LINEAR: Linear scaling
* - YARN: YaRN RoPE scaling
* @group param
*/
val ropeScalingType = new Param[String](
this,
"ropeScalingType",
"Set the RoPE frequency scaling method, defaults to linear unless specified by the model")
/** Set the pooling type for embeddings, use model default if unspecified
*
* - 0 UNSPECIFIED: Don't use any pooling
* - 1 MEAN: Mean Pooling
* - 2 CLS: CLS Pooling
*
* @group param
*/
val poolingType = new Param[String](
this,
"poolingType",
"Set the pooling type for embeddings, use model default if unspecified")
// model = new Param[String](this, "model", "Set the model file path to load")
/** @group param */
val modelDraft =
new Param[String](this, "modelDraft", "Set the draft model for speculative decoding")
// modelAlias = new Param[String](this, "modelAlias", "Set a model alias")
/** @group param */
val lookupCacheStaticFilePath = new Param[String](
this,
"lookupCacheStaticFilePath",
"Set path to static lookup cache to use for lookup decoding (not updated by generation)")
/** @group param */
val lookupCacheDynamicFilePath = new Param[String](
this,
"lookupCacheDynamicFilePath",
"Set path to dynamic lookup cache to use for lookup decoding (updated by generation)")
/** @group param */
val loraAdapters = new StructFeature[Map[String, Float]](this, "loraAdapters")
val embedding =
new BooleanParam(this, "embedding", "Whether to load model with embedding support")
/** @group param */
val flashAttention =
new BooleanParam(this, "flashAttention", "Whether to enable Flash Attention")
/** @group param */
val inputPrefixBos = new BooleanParam(
this,
"inputPrefixBos",
"Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string")
/** @group param */
val useMmap = new BooleanParam(
this,
"useMmap",
"Whether to use memory-map model (faster load but may increase pageouts if not using mlock)")
/** @group param */
val useMlock = new BooleanParam(
this,
"useMlock",
"Whether to force the system to keep model in RAM rather than swapping or compressing")
/** @group param */
val noKvOffload = new BooleanParam(this, "noKvOffload", "Whether to disable KV offload")
/** @group param */
val systemPrompt = new Param[String](this, "systemPrompt", "Set a system prompt to use")
/** @group param */
val chatTemplate =
new Param[String](this, "chatTemplate", "The chat template to use")
/** Set the number of threads to use during generation
*
* @group setParam
*/
def setNThreads(nThreads: Int): this.type = { set(this.nThreads, nThreads) }
/** Set the number of threads to use during draft generation
*
* @group setParam
*/
def setNThreadsDraft(nThreadsDraft: Int): this.type = { set(this.nThreadsDraft, nThreadsDraft) }
/** Set the number of threads to use during batch and prompt processing
*
* @group setParam
*/
def setNThreadsBatch(nThreadsBatch: Int): this.type = { set(this.nThreadsBatch, nThreadsBatch) }
/** Set the number of threads to use during batch and prompt processing
*
* @group setParam
*/
def setNThreadsBatchDraft(nThreadsBatchDraft: Int): this.type = {
set(this.nThreadsBatchDraft, nThreadsBatchDraft)
}
/** Set the size of the prompt context
*
* @group setParam
*/
def setNCtx(nCtx: Int): this.type = { set(this.nCtx, nCtx) }
/** Set the logical batch size for prompt processing (must be >=32 to use BLAS)
*
* @group setParam
*/
def setNBatch(nBatch: Int): this.type = { set(this.nBatch, nBatch) }
/** Set the physical batch size for prompt processing (must be >=32 to use BLAS)
*
* @group setParam
*/
def setNUbatch(nUbatch: Int): this.type = { set(this.nUbatch, nUbatch) }
/** Set the number of tokens to draft for speculative decoding
*
* @group setParam
*/
def setNDraft(nDraft: Int): this.type = { set(this.nDraft, nDraft) }
/** Set the maximal number of chunks to process
*
* @group setParam
*/
def setNChunks(nChunks: Int): this.type = { set(this.nChunks, nChunks) }
/** Set the number of sequences to decode
*
* @group setParam
*/
def setNSequences(nSequences: Int): this.type = { set(this.nSequences, nSequences) }
/** Set the speculative decoding split probability
*
* @group setParam
*/
def setPSplit(pSplit: Float): this.type = { set(this.pSplit, pSplit) }
/** Set the number of layers to store in VRAM (-1 - use default)
*
* @group setParam
*/
def setNGpuLayers(nGpuLayers: Int): this.type = { set(this.nGpuLayers, nGpuLayers) }
/** Set the number of layers to store in VRAM for the draft model (-1 - use default)
*
* @group setParam
*/
def setNGpuLayersDraft(nGpuLayersDraft: Int): this.type = {
set(this.nGpuLayersDraft, nGpuLayersDraft)
}
/** Set how to split the model across GPUs
*
* - NONE: No GPU split
* -LAYER: Split the model across GPUs by layer 2. ROW: Split the model across GPUs by rows
*
* @group setParam
*/
def setGpuSplitMode(splitMode: String): this.type = { set(this.gpuSplitMode, splitMode) }
/** Set the GPU that is used for scratch and small tensors
*
* @group setParam
*/
def setMainGpu(mainGpu: Int): this.type = { set(this.mainGpu, mainGpu) }
/** Set how split tensors should be distributed across GPUs
*
* @group setParam
*/
def setTensorSplit(tensorSplit: Array[Double]): this.type = {
set(this.tensorSplit, tensorSplit)
}
/** Set the group-attention factor
*
* @group setParam
*/
def setGrpAttnN(grpAttnN: Int): this.type = { set(this.grpAttnN, grpAttnN) }
/** Set the group-attention width
*
* @group setParam
*/
def setGrpAttnW(grpAttnW: Int): this.type = { set(this.grpAttnW, grpAttnW) }
/** Set the RoPE base frequency, used by NTK-aware scaling
*
* @group setParam
*/
def setRopeFreqBase(ropeFreqBase: Float): this.type = { set(this.ropeFreqBase, ropeFreqBase) }
/** Set the RoPE frequency scaling factor, expands context by a factor of 1/N
*
* @group setParam
*/
def setRopeFreqScale(ropeFreqScale: Float): this.type = {
set(this.ropeFreqScale, ropeFreqScale)
}
/** Set the YaRN extrapolation mix factor
*
* @group setParam
*/
def setYarnExtFactor(yarnExtFactor: Float): this.type = {
set(this.yarnExtFactor, yarnExtFactor)
}
/** Set the YaRN scale sqrt(t) or attention magnitude
*
* @group setParam
*/
def setYarnAttnFactor(yarnAttnFactor: Float): this.type = {
set(this.yarnAttnFactor, yarnAttnFactor)
}
/** Set the YaRN low correction dim or beta
*
* @group setParam
*/
def setYarnBetaFast(yarnBetaFast: Float): this.type = { set(this.yarnBetaFast, yarnBetaFast) }
/** Set the YaRN high correction dim or alpha
*
* @group setParam
*/
def setYarnBetaSlow(yarnBetaSlow: Float): this.type = { set(this.yarnBetaSlow, yarnBetaSlow) }
/** Set the YaRN original context size of model
*
* @group setParam
*/
def setYarnOrigCtx(yarnOrigCtx: Int): this.type = { set(this.yarnOrigCtx, yarnOrigCtx) }
/** Set the KV cache defragmentation threshold
*
* @group setParam
*/
def setDefragmentationThreshold(defragThold: Float): this.type = {
set(this.defragmentationThreshold, defragThold)
}
/** Set optimization strategies that help on some NUMA systems (if available)
*
* Available Strategies:
*
* - DISABLED: No NUMA optimizations
* - DISTRIBUTE: spread execution evenly over all
* - ISOLATE: only spawn threads on CPUs on the node that execution started on
* - NUMA_CTL: use the CPU map provided by numactl
* - MIRROR: Mirrors the model across NUMA nodes
*
* @group setParam
*/
def setNumaStrategy(numa: String): this.type = { set(this.numaStrategy, numa) }
/** Set the RoPE frequency scaling method, defaults to linear unless specified by the model.
*
* - UNSPECIFIED: Don't use any scaling
* - LINEAR: Linear scaling
* - YARN: YaRN RoPE scaling
* @group setParam
*/
def setRopeScalingType(ropeScalingType: String): this.type = {
set(this.ropeScalingType, ropeScalingType)
}
/** Set the pooling type for embeddings, use model default if unspecified
*
* - UNSPECIFIED: Don't use any pooling
* - MEAN: Mean Pooling
* - CLS: CLS Pooling
*
* @group setParam
*/
def setPoolingType(poolingType: String): this.type = { set(this.poolingType, poolingType) }
/** Set the draft model for speculative decoding
*
* @group setParam
*/
def setModelDraft(modelDraft: String): this.type = { set(this.modelDraft, modelDraft) }
/** Set a model alias
*
* @group setParam
*/
def setLookupCacheStaticFilePath(lookupCacheStaticFilePath: String): this.type = {
set(this.lookupCacheStaticFilePath, lookupCacheStaticFilePath)
}
/** Set a model alias
*
* @group setParam
*/
def setLookupCacheDynamicFilePath(lookupCacheDynamicFilePath: String): this.type = {
set(this.lookupCacheDynamicFilePath, lookupCacheDynamicFilePath)
}
/** Sets paths to lora adapters with user defined scale.
*
* @group setParam
*/
def setLoraAdapters(loraAdapters: Map[String, Float]): this.type = {
set(this.loraAdapters, loraAdapters)
}
/** Sets paths to lora adapters with user defined scale. (PySpark Override)
*
* @group setParam
*/
def setLoraAdapters(loraAdapters: java.util.HashMap[String, java.lang.Double]): this.type = {
val scalaLoraAdapters = loraAdapters.asScala.map { case (k, v) => k -> v.floatValue() }
set(this.loraAdapters, scalaLoraAdapters.toMap)
}
/** Whether to load model with embedding support
*
* @group setParam
*/
def setEmbedding(embedding: Boolean): this.type = { set(this.embedding, embedding) }
/** Whether to enable Flash Attention
*
* @group setParam
*/
def setFlashAttention(flashAttention: Boolean): this.type = {
set(this.flashAttention, flashAttention)
}
/** Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string
*
* @group setParam
*/
def setInputPrefixBos(inputPrefixBos: Boolean): this.type = {
set(this.inputPrefixBos, inputPrefixBos)
}
/** Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
*
* @group setParam
*/
def setUseMmap(useMmap: Boolean): this.type = { set(this.useMmap, useMmap) }
/** Whether to force the system to keep model in RAM rather than swapping or compressing
*
* @group setParam
*/
def setUseMlock(useMlock: Boolean): this.type = { set(this.useMlock, useMlock) }
/** Whether to disable KV offload
*
* @group setParam
*/
def setNoKvOffload(noKvOffload: Boolean): this.type = { set(this.noKvOffload, noKvOffload) }
/** Set a system prompt to use
*
* @group setParam
*/
def setSystemPrompt(systemPrompt: String): this.type = { set(this.systemPrompt, systemPrompt) }
/** The chat template to use
*
* @group setParam
*/
def setChatTemplate(chatTemplate: String): this.type = { set(this.chatTemplate, chatTemplate) }
// ---------------- GETTERS ----------------
/** @group getParam */
def getNThreads: Int = $(nThreads)
/** @group getParam */
def getNThreadsDraft: Int = $(nThreadsDraft)
/** @group getParam */
def getNThreadsBatch: Int = $(nThreadsBatch)
/** @group getParam */
def getNThreadsBatchDraft: Int = $(nThreadsBatchDraft)
/** @group getParam */
def getNCtx: Int = $(nCtx)
/** @group getParam */
def getNBatch: Int = $(nBatch)
/** @group getParam */
def getNUbatch: Int = $(nUbatch)
/** @group getParam */
def getNDraft: Int = $(nDraft)
/** @group getParam */
def getNChunks: Int = $(nChunks)
/** @group getParam */
def getNSequences: Int = $(nSequences)
/** @group getParam */
def getPSplit: Float = $(pSplit)
/** @group getParam */
def getNGpuLayers: Int = $(nGpuLayers)
/** @group getParam */
def getNGpuLayersDraft: Int = $(nGpuLayersDraft)
/** @group getParam */
def getSplitMode: String = $(gpuSplitMode)
/** @group getParam */
def getMainGpu: Int = $(mainGpu)
/** @group getParam */
def getTensorSplit: Array[Double] = $(tensorSplit)
def getGrpAttnN: Int = $(grpAttnN)
/** @group getParam */
def getGrpAttnW: Int = $(grpAttnW)
/** @group getParam */
def getRopeFreqBase: Float = $(ropeFreqBase)
/** @group getParam */
def getRopeFreqScale: Float = $(ropeFreqScale)
/** @group getParam */
def getYarnExtFactor: Float = $(yarnExtFactor)
/** @group getParam */
def getYarnAttnFactor: Float = $(yarnAttnFactor)
/** @group getParam */
def getYarnBetaFast: Float = $(yarnBetaFast)
/** @group getParam */
def getYarnBetaSlow: Float = $(yarnBetaSlow)
/** @group getParam */
def getYarnOrigCtx: Int = $(yarnOrigCtx)
/** @group getParam */
def getDefragmentationThreshold: Float = $(defragmentationThreshold)
/** @group getParam */
def getNuma: String = $(numaStrategy)
/** @group getParam */
def getRopeScalingType: String = $(ropeScalingType)
/** @group getParam */
def getPoolingType: String = $(poolingType)
/** @group getParam */
def getModelDraft: String = $(modelDraft)
/** @group getParam */
def getLookupCacheStaticFilePath: String = $(lookupCacheStaticFilePath)
/** @group getParam */
def getLookupCacheDynamicFilePath: String = $(lookupCacheDynamicFilePath)
/** @group getParam */
def getLoraAdapters: Map[String, Float] = $$(loraAdapters)
/** @group getParam */
def getEmbedding: Boolean = $(embedding)
/** @group getParam */
def getFlashAttention: Boolean = $(flashAttention)
/** @group getParam */
def getInputPrefixBos: Boolean = $(inputPrefixBos)
/** @group getParam */
def getUseMmap: Boolean = $(useMmap)
/** @group getParam */
def getUseMlock: Boolean = $(useMlock)
/** @group getParam */
def getNoKvOffload: Boolean = $(noKvOffload)
/** @group getParam */
def getSystemPrompt: String = $(systemPrompt)
/** @group getParam */
def getChatTemplate: String = $(chatTemplate)
// ---------------- INFERENCE PARAMETERS ----------------
/** @group param */
val inputPrefix =
new Param[String](this, "inputPrefix", "Set the prompt to start generation with")
/** @group param */
val inputSuffix =
new Param[String](this, "inputSuffix", "Set a suffix for infilling")
/** @group param */
val cachePrompt = new BooleanParam(
this,
"cachePrompt",
"Whether to remember the prompt to avoid reprocessing it")
/** @group param */
val nPredict = new IntParam(this, "nPredict", "Set the number of tokens to predict")
/** @group param */
val topK = new IntParam(this, "topK", "Set top-k sampling")
/** @group param */
val topP = new FloatParam(this, "topP", "Set top-p sampling")
/** @group param */
val minP = new FloatParam(this, "minP", "Set min-p sampling")
/** @group param */
val tfsZ = new FloatParam(this, "tfsZ", "Set tail free sampling, parameter z")
/** @group param */
val typicalP = new FloatParam(this, "typicalP", "Set locally typical sampling, parameter p")
/** @group param */
val temperature = new FloatParam(this, "temperature", "Set the temperature")
/** @group param */
val dynamicTemperatureRange =
new FloatParam(this, "dynatempRange", "Set the dynamic temperature range")
/** @group param */
val dynamicTemperatureExponent =
new FloatParam(this, "dynatempExponent", "Set the dynamic temperature exponent")
/** @group param */
val repeatLastN =
new IntParam(this, "repeatLastN", "Set the last n tokens to consider for penalties")
/** @group param */
val repeatPenalty =
new FloatParam(this, "repeatPenalty", "Set the penalty of repeated sequences of tokens")
/** @group param */
val frequencyPenalty =
new FloatParam(this, "frequencyPenalty", "Set the repetition alpha frequency penalty")
/** @group param */
val presencePenalty =
new FloatParam(this, "presencePenalty", "Set the repetition alpha presence penalty")
/** @group param */
val miroStat = new Param[String](this, "miroStat", "Set MiroStat sampling strategies.")
/** @group param */
val miroStatTau =
new FloatParam(this, "mirostatTau", "Set the MiroStat target entropy, parameter tau")
/** @group param */
val miroStatEta =
new FloatParam(this, "mirostatEta", "Set the MiroStat learning rate, parameter eta")
/** @group param */
val penalizeNl = new BooleanParam(this, "penalizeNl", "Whether to penalize newline tokens")
/** @group param */
val nKeep =
new IntParam(this, "nKeep", "Set the number of tokens to keep from the initial prompt")
/** @group param */
val seed = new IntParam(this, "seed", "Set the RNG seed")
/** @group param */
val nProbs = new IntParam(
this,
"nProbs",
"Set the amount top tokens probabilities to output if greater than 0.")
/** @group param */
val minKeep = new IntParam(
this,
"minKeep",
"Set the amount of tokens the samplers should return at least (0 = disabled)")
/** @group param */
val grammar =
new Param[String](this, "grammar", "Set BNF-like grammar to constrain generations")
/** @group param */
val penaltyPrompt = new Param[String](
this,
"penaltyPrompt",
"Override which part of the prompt is penalized for repetition.")
/** @group param */
val ignoreEos = new BooleanParam(
this,
"ignoreEos",
"Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)")
// Modify the likelihood of tokens appearing in the completion by their id.
val tokenIdBias: StructFeature[Map[Int, Float]] =
new StructFeature[Map[Int, Float]](this, "tokenIdBias")
// Modify the likelihood of tokens appearing in the completion by their string.
/** @group param */
val tokenBias: StructFeature[Map[String, Float]] =
new StructFeature[Map[String, Float]](this, "tokenBias")
/** @group param */
val disableTokenIds =
new IntArrayParam(this, "disableTokenIds", "Set the token ids to disable in the completion")
/** @group param */
val stopStrings = new StringArrayParam(
this,
"stopStrings",
"Set strings upon seeing which token generation is stopped")
/** @group param */
val samplers = new StringArrayParam(
this,
"samplers",
"Set which samplers to use for token generation in the given order")
/** @group param */
val useChatTemplate = new BooleanParam(
this,
"useChatTemplate",
"Set whether or not generate should apply a chat template")
/** Set the prompt to start generation with
*
* @group setParam
*/
def setInputPrefix(inputPrefix: String): this.type = { set(this.inputPrefix, inputPrefix) }
/** Set a suffix for infilling
*
* @group setParam
*/
def setInputSuffix(inputSuffix: String): this.type = { set(this.inputSuffix, inputSuffix) }
/** Whether to remember the prompt to avoid reprocessing it
*
* @group setParam
*/
def setCachePrompt(cachePrompt: Boolean): this.type = { set(this.cachePrompt, cachePrompt) }
/** Set the number of tokens to predict
*
* @group setParam
*/
def setNPredict(nPredict: Int): this.type = { set(this.nPredict, nPredict) }
/** Set top-k sampling
*
* @group setParam
*/
def setTopK(topK: Int): this.type = { set(this.topK, topK) }
/** Set top-p sampling
*
* @group setParam
*/
def setTopP(topP: Float): this.type = { set(this.topP, topP) }
/** Set min-p sampling
*
* @group setParam
*/
def setMinP(minP: Float): this.type = { set(this.minP, minP) }
/** Set tail free sampling, parameter z
* @group setParam
*/
def setTfsZ(tfsZ: Float): this.type = { set(this.tfsZ, tfsZ) }
/** Set locally typical sampling, parameter p
*
* @group setParam
*/
def setTypicalP(typicalP: Float): this.type = { set(this.typicalP, typicalP) }
/** Set the temperature
*
* @group setParam
*/
def setTemperature(temperature: Float): this.type = { set(this.temperature, temperature) }
/** Set the dynamic temperature range
*
* @group setParam
*/
def setDynamicTemperatureRange(dynatempRange: Float): this.type = {
set(this.dynamicTemperatureRange, dynatempRange)
}
/** Set the dynamic temperature exponent
*
* @group setParam
*/
def setDynamicTemperatureExponent(dynatempExponent: Float): this.type = {
set(this.dynamicTemperatureExponent, dynatempExponent)
}
/** Set the last n tokens to consider for penalties
*
* @group setParam
*/
def setRepeatLastN(repeatLastN: Int): this.type = { set(this.repeatLastN, repeatLastN) }
/** Set the penalty of repeated sequences of tokens
*
* @group setParam
*/
def setRepeatPenalty(repeatPenalty: Float): this.type = {
set(this.repeatPenalty, repeatPenalty)
}
/** Set the repetition alpha frequency penalty
*
* @group setParam
*/
def setFrequencyPenalty(frequencyPenalty: Float): this.type = {
set(this.frequencyPenalty, frequencyPenalty)
}
/** Set the repetition alpha presence penalty
*
* @group setParam
*/
def setPresencePenalty(presencePenalty: Float): this.type = {
set(this.presencePenalty, presencePenalty)
}
/** Set MiroStat sampling strategies.
*
* - DISABLED: No MiroStat
* - V1: MiroStat V1
* - V2: MiroStat V2
*
* @group setParam
*/
def setMiroStat(mirostat: String): this.type = set(this.miroStat, mirostat)
/** Set the MiroStat target entropy, parameter tau
*
* @group setParam
*/
def setMiroStatTau(mirostatTau: Float): this.type = { set(this.miroStatTau, mirostatTau) }
/** Set the MiroStat learning rate, parameter eta
*
* @group setParam
*/
def setMiroStatEta(mirostatEta: Float): this.type = { set(this.miroStatEta, mirostatEta) }
/** Set whether to penalize newline tokens
*
* @group setParam
*/
def setPenalizeNl(penalizeNl: Boolean): this.type = { set(this.penalizeNl, penalizeNl) }
/** Set the number of tokens to keep from the initial prompt
*
* @group setParam
*/
def setNKeep(nKeep: Int): this.type = { set(this.nKeep, nKeep) }
/** Set the RNG seed
*
* @group setParam
*/
def setSeed(seed: Int): this.type = { set(this.seed, seed) }
/** Set the amount top tokens probabilities to output if greater than 0.
*
* @group setParam
*/
def setNProbs(nProbs: Int): this.type = { set(this.nProbs, nProbs) }
/** Set the amount of tokens the samplers should return at least (0 = disabled)
*
* @group setParam
*/
def setMinKeep(minKeep: Int): this.type = { set(this.minKeep, minKeep) }
/** Set BNF-like grammar to constrain generations
*
* @group setParam
*/
def setGrammar(grammar: String): this.type = { set(this.grammar, grammar) }
/** Override which part of the prompt is penalized for repetition.
*
* @group setParam
*/
def setPenaltyPrompt(penaltyPrompt: String): this.type = {
set(this.penaltyPrompt, penaltyPrompt)
}
/** Set whether to ignore end of stream token and continue generating (implies --logit-bias
* 2-inf)
*
* @group setParam
*/
def setIgnoreEos(ignoreEos: Boolean): this.type = { set(this.ignoreEos, ignoreEos) }
/** Set the tokens to disable during completion.
*
* @group setParam
*/
def setTokenBias(tokenBias: Map[String, Float]): this.type = {
set(this.tokenBias, tokenBias)
}
/** Set the tokens to disable during completion. (Override for PySpark)
*
* @group setParam
*/
def setTokenBias(tokenBias: java.util.HashMap[String, java.lang.Double]): this.type = {
val scalaTokenBias = tokenBias.asScala.map { case (k, v) => k -> v.floatValue() }
set(this.tokenBias, scalaTokenBias.toMap)
}
/** Set the token ids to disable in the completion.
*
* @group setParam
*/
def setTokenIdBias(tokenIdBias: Map[Int, Float]): this.type = {
set(this.tokenIdBias, tokenIdBias)
}
/** Set the token ids to disable in the completion. (Override for PySpark)
*
* @group setParam
*/
def setTokenIdBias(tokenIdBias: java.util.HashMap[Integer, java.lang.Double]): this.type = {
val scalaTokenIdBias = tokenIdBias.asScala.map { case (k, v) => k.toInt -> v.toFloat }
set(this.tokenIdBias, scalaTokenIdBias.toMap)
}
/** Set the token ids to disable in the completion. This corresponds to `setTokenBias` with a
* value of `Float.NEGATIVE_INFINITY`.
*
* @group setParam
*/
def setDisableTokenIds(disableTokenIds: Array[Int]): this.type = {
set(this.disableTokenIds, disableTokenIds)
}
/** Set strings upon seeing which token generation is stopped
*
* @group setParam
*/
def setStopStrings(stopStrings: Array[String]): this.type = {
set(this.stopStrings, stopStrings)
}
/** Set which samplers to use for token generation in the given order .
*
* Available Samplers are:
*
* - TOP_K: Top-k sampling
* - TFS_Z: Tail free sampling
* - TYPICAL_P: Locally typical sampling p
* - TOP_P: Top-p sampling
* - MIN_P: Min-p sampling
* - TEMPERATURE: Temperature sampling
* @group setParam
*/
def setSamplers(samplers: Array[String]): this.type = { set(this.samplers, samplers) }
/** Set whether or not generate should apply a chat template
*
* @group setParam
*/
def setUseChatTemplate(useChatTemplate: Boolean): this.type = {
set(this.useChatTemplate, useChatTemplate)
}
// ---------------- GETTERS ----------------
/** @group getParam */
def getInputPrefix: String = $(inputPrefix)
/** @group getParam */
def getInputSuffix: String = $(inputSuffix)
/** @group getParam */
def getCachePrompt: Boolean = $(cachePrompt)
def getNPredict: Int = $(nPredict)
/** @group getParam */
def getTopK: Int = $(topK)
/** @group getParam */
def getTopP: Float = $(topP)
/** @group getParam */
def getMinP: Float = $(minP)
/** @group getParam */
def getTfsZ: Float = $(tfsZ)
/** @group getParam */
def getTypicalP: Float = $(typicalP)
/** @group getParam */
def getTemperature: Float = $(temperature)
/** @group getParam */
def getDynamicTemperatureRange: Float = $(dynamicTemperatureRange)
/** @group getParam */
def getDynamicTemperatureExponent: Float = $(dynamicTemperatureExponent)
/** @group getParam */
def getRepeatLastN: Int = $(repeatLastN)
/** @group getParam */
def getRepeatPenalty: Float = $(repeatPenalty)
/** @group getParam */
def getFrequencyPenalty: Float = $(frequencyPenalty)
/** @group getParam */
def getPresencePenalty: Float = $(presencePenalty)
/** @group getParam */
def getMiroStat: String = $(miroStat)
/** @group getParam */
def getMiroStatTau: Float = $(miroStatTau)
/** @group getParam */
def getMiroStatEta: Float = $(miroStatEta)
/** @group getParam */
def getPenalizeNl: Boolean = $(penalizeNl)
/** @group getParam */
def getNKeep: Int = $(nKeep)
/** @group getParam */
def getSeed: Int = $(seed)
/** @group getParam */
def getNProbs: Int = $(nProbs)
/** @group getParam */
def getMinKeep: Int = $(minKeep)
/** @group getParam */
def getGrammar: String = $(grammar)
/** @group getParam */
def getPenaltyPrompt: String = $(penaltyPrompt)
/** @group getParam */
def getIgnoreEos: Boolean = $(ignoreEos)
/** @group getParam */
def getTokenIdBias: Map[Int, Float] = $$(tokenIdBias)
/** @group getParam */
def getTokenBias: Map[String, Float] = $$(tokenBias)
/** @group getParam */
def getDisableTokenIds: Array[Int] = $(disableTokenIds)
/** @group getParam */
def getStopStrings: Array[String] = $(stopStrings)
/** @group getParam */
def getSamplers: Array[String] = $(samplers)
/** @group getParam */
def getUseChatTemplate: Boolean = $(useChatTemplate)
protected def getModelParameters: ModelParameters = {
val modelParameters = new ModelParameters().setContinuousBatching(true) // Always enabled
if (isDefined(chatTemplate)) modelParameters.setChatTemplate($(chatTemplate))
if (isDefined(defragmentationThreshold))
modelParameters.setDefragmentationThreshold($(defragmentationThreshold))
if (isDefined(embedding)) modelParameters.setEmbedding($(embedding))
if (isDefined(flashAttention)) modelParameters.setFlashAttention($(flashAttention))
if (isDefined(gpuSplitMode))
modelParameters.setSplitMode(GpuSplitMode.valueOf($(gpuSplitMode)))
if (isDefined(grpAttnN)) modelParameters.setGrpAttnN($(grpAttnN))
if (isDefined(grpAttnW)) modelParameters.setGrpAttnN($(grpAttnW))
if (isDefined(inputPrefixBos)) modelParameters.setInputPrefixBos($(inputPrefixBos))
if (isDefined(lookupCacheDynamicFilePath))
modelParameters.setLookupCacheDynamicFilePath($(lookupCacheDynamicFilePath))
if (isDefined(lookupCacheStaticFilePath))
modelParameters.setLookupCacheStaticFilePath($(lookupCacheStaticFilePath))
if (isDefined(mainGpu)) modelParameters.setMainGpu($(mainGpu))
if (isDefined(modelDraft)) modelParameters.setModelDraft($(modelDraft))
if (isDefined(nBatch)) modelParameters.setNBatch($(nBatch))
if (isDefined(nChunks)) modelParameters.setNChunks($(nChunks))
if (isDefined(nCtx)) modelParameters.setNCtx($(nCtx))
if (isDefined(nDraft)) modelParameters.setNDraft($(nDraft))
if (isDefined(nGpuLayers)) modelParameters.setNGpuLayers($(nGpuLayers))
if (isDefined(nGpuLayersDraft)) modelParameters.setNGpuLayersDraft($(nGpuLayersDraft))
if (isDefined(nSequences)) modelParameters.setNSequences($(nSequences))
if (isDefined(nThreads)) modelParameters.setNThreads($(nThreads))
if (isDefined(nThreadsBatch)) modelParameters.setNThreadsBatch($(nThreadsBatch))
if (isDefined(nThreadsBatchDraft))
modelParameters.setNThreadsBatchDraft($(nThreadsBatchDraft))
if (isDefined(nThreadsDraft)) modelParameters.setNThreadsDraft($(nThreadsDraft))
if (isDefined(nUbatch)) modelParameters.setNUbatch($(nUbatch))
if (isDefined(noKvOffload)) modelParameters.setNoKvOffload($(noKvOffload))
if (isDefined(numaStrategy)) modelParameters.setNuma(NumaStrategy.valueOf($(numaStrategy)))
if (isDefined(pSplit)) modelParameters.setPSplit($(pSplit))
if (isDefined(poolingType))
modelParameters.setPoolingType(PoolingType.valueOf($(poolingType)))
if (isDefined(ropeFreqBase)) modelParameters.setRopeFreqBase($(ropeFreqBase))
if (isDefined(ropeFreqScale)) modelParameters.setRopeFreqScale($(ropeFreqScale))
if (isDefined(ropeScalingType))
modelParameters.setRopeScalingType(RopeScalingType.valueOf($(ropeScalingType)))
if (isDefined(systemPrompt)) modelParameters.setSystemPrompt($(systemPrompt))
if (isDefined(tensorSplit)) modelParameters.setTensorSplit($(tensorSplit).map(_.toFloat))
if (isDefined(useMlock)) modelParameters.setUseMlock($(useMlock))
if (isDefined(useMmap)) modelParameters.setUseMmap($(useMmap))
if (isDefined(yarnAttnFactor)) modelParameters.setYarnAttnFactor($(yarnAttnFactor))
if (isDefined(yarnBetaFast)) modelParameters.setYarnBetaFast($(yarnBetaFast))
if (isDefined(yarnBetaSlow)) modelParameters.setYarnBetaSlow($(yarnBetaSlow))
if (isDefined(yarnExtFactor)) modelParameters.setYarnExtFactor($(yarnExtFactor))
if (isDefined(yarnOrigCtx)) modelParameters.setYarnOrigCtx($(yarnOrigCtx))
if (loraAdapters.isSet) {
val loraAdaptersMap: mutable.Map[String, java.lang.Float] =
mutable.Map($$(loraAdapters).map { case (key, value) =>
(key, float2Float(value))
}.toSeq: _*)
modelParameters.setLoraAdapters(loraAdaptersMap.asJava)
} // Need to convert to mutable map first
modelParameters
}
protected def getInferenceParameters: InferenceParameters = {
val inferenceParams = new InferenceParameters("")
if (isDefined(cachePrompt)) inferenceParams.setCachePrompt($(cachePrompt))
if (isDefined(disableTokenIds)) {
val javaCollection: java.util.Collection[Integer] =
$(disableTokenIds).map(int2Integer).toSeq.asJava
inferenceParams.disableTokenIds(javaCollection)
}
if (isDefined(dynamicTemperatureExponent))
inferenceParams.setDynamicTemperatureExponent($(dynamicTemperatureExponent))
if (isDefined(dynamicTemperatureRange))
inferenceParams.setDynamicTemperatureRange($(dynamicTemperatureRange))
if (isDefined(frequencyPenalty)) inferenceParams.setFrequencyPenalty($(frequencyPenalty))
if (isDefined(grammar)) inferenceParams.setGrammar($(grammar))
if (isDefined(ignoreEos)) inferenceParams.setIgnoreEos($(ignoreEos))
if (isDefined(inputPrefix)) inferenceParams.setInputPrefix($(inputPrefix))
if (isDefined(inputSuffix)) inferenceParams.setInputSuffix($(inputSuffix))
if (isDefined(minKeep)) inferenceParams.setMinKeep($(minKeep))
if (isDefined(minP)) inferenceParams.setMinP($(minP))
if (isDefined(miroStat)) inferenceParams.setMiroStat(MiroStat.valueOf($(miroStat)))
if (isDefined(miroStatEta)) inferenceParams.setMiroStatEta($(miroStatEta))
if (isDefined(miroStatTau)) inferenceParams.setMiroStatTau($(miroStatTau))
if (isDefined(nKeep)) inferenceParams.setNKeep($(nKeep))
if (isDefined(nPredict)) inferenceParams.setNPredict($(nPredict))
if (isDefined(nProbs)) inferenceParams.setNProbs($(nProbs))
if (isDefined(penalizeNl)) inferenceParams.setPenalizeNl($(penalizeNl))
if (isDefined(penaltyPrompt)) inferenceParams.setPenaltyPrompt($(penaltyPrompt))
if (isDefined(presencePenalty)) inferenceParams.setPresencePenalty($(presencePenalty))
if (isDefined(repeatLastN)) inferenceParams.setRepeatLastN($(repeatLastN))
if (isDefined(repeatPenalty)) inferenceParams.setRepeatPenalty($(repeatPenalty))
if (isDefined(samplers)) inferenceParams.setSamplers($(samplers).map(Sampler.valueOf): _*)
if (isDefined(seed)) inferenceParams.setSeed($(seed))
if (isDefined(stopStrings)) inferenceParams.setStopStrings($(stopStrings): _*)
if (isDefined(temperature)) inferenceParams.setTemperature($(temperature))
if (isDefined(tfsZ)) inferenceParams.setTfsZ($(tfsZ))
if (isDefined(topK)) inferenceParams.setTopK($(topK))
if (isDefined(topP)) inferenceParams.setTopP($(topP))
if (isDefined(typicalP)) inferenceParams.setTypicalP($(typicalP))
if (isDefined(useChatTemplate)) inferenceParams.setUseChatTemplate($(useChatTemplate))
if (tokenBias.isSet) {
val tokenBiasMap: mutable.Map[String, java.lang.Float] = mutable.Map($$(tokenBias).map {
case (key, value) => (key, float2Float(value))
}.toSeq: _*)
inferenceParams.setTokenBias(tokenBiasMap.asJava)
}
if (tokenIdBias.isSet) {
val tokenIdBiasMap: mutable.Map[Integer, java.lang.Float] =
mutable.Map($$(tokenIdBias).map { case (key, value) =>
(int2Integer(key), float2Float(value))
}.toSeq: _*)
inferenceParams.setTokenIdBias(tokenIdBiasMap.asJava)
}
inferenceParams
}
// ---------------- METADATA ----------------
val metadata =
new Param[String](this, "metadata", "Set the metadata for the model").setProtected()
/** Set the metadata for the model
* @group setParam
*/
def setMetadata(metadata: String): this.type = { set(this.metadata, metadata) }
/** Get the metadata for the model
* @group getParam
*/
def getMetadata: String = $(metadata)
}