Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2022 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators
import com.johnsnowlabs.nlp.{
Annotation,
AnnotatorModel,
HasSimpleAnnotate,
ParamsAndFeaturesReadable
}
import org.apache.spark.ml.param.{BooleanParam, IntParam, Param, ParamValidators}
import org.apache.spark.ml.util.Identifiable
/** A feature transformer that converts the input array of strings (annotatorType TOKEN) into an
* array of n-grams (annotatorType CHUNK). Null values in the input array are ignored. It returns
* an array of n-grams where each n-gram is represented by a space-separated string of words.
*
* When the input is empty, an empty array is returned. When the input array length is less than
* n (number of elements per n-gram), no n-grams are returned.
*
* For more extended examples see the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/text/english/chunking/NgramGenerator.ipynb Examples]]
* and the
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/NGramGeneratorTestSpec.scala NGramGeneratorTestSpec]].
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotator.SentenceDetector
* import com.johnsnowlabs.nlp.annotators.Tokenizer
* import com.johnsnowlabs.nlp.annotators.NGramGenerator
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("document")
*
* val sentence = new SentenceDetector()
* .setInputCols("document")
* .setOutputCol("sentence")
*
* val tokenizer = new Tokenizer()
* .setInputCols(Array("sentence"))
* .setOutputCol("token")
*
* val nGrams = new NGramGenerator()
* .setInputCols("token")
* .setOutputCol("ngrams")
* .setN(2)
*
* val pipeline = new Pipeline().setStages(Array(
* documentAssembler,
* sentence,
* tokenizer,
* nGrams
* ))
*
* val data = Seq("This is my sentence.").toDF("text")
* val results = pipeline.fit(data).transform(data)
*
* results.selectExpr("explode(ngrams) as result").show(false)
* +------------------------------------------------------------+
* |result |
* +------------------------------------------------------------+
* |[chunk, 0, 6, This is, [sentence -> 0, chunk -> 0], []] |
* |[chunk, 5, 9, is my, [sentence -> 0, chunk -> 1], []] |
* |[chunk, 8, 18, my sentence, [sentence -> 0, chunk -> 2], []]|
* |[chunk, 11, 19, sentence ., [sentence -> 0, chunk -> 3], []]|
* +------------------------------------------------------------+
* }}}
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class NGramGenerator(override val uid: String)
extends AnnotatorModel[NGramGenerator]
with HasSimpleAnnotate[NGramGenerator] {
import com.johnsnowlabs.nlp.AnnotatorType._
/** Output annotator type : CHUNK
*
* @group anno
*/
override val outputAnnotatorType: AnnotatorType = CHUNK
/** Input annotator type : TOKEN
*
* @group anno
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(TOKEN)
def this() = this(Identifiable.randomUID("NGRAM_GENERATOR"))
/** Minimum n-gram length, greater than or equal to 1 (Default: `2`, bigram features)
*
* @group param
*/
val n: IntParam =
new IntParam(this, "n", "Number elements per n-gram (>=1)", ParamValidators.gtEq(1))
/** Whether to calculate just the actual n-grams or all n-grams from 1 through n (Default:
* `false`)
*
* @group param
*/
val enableCumulative: BooleanParam = new BooleanParam(
this,
"enableCumulative",
"Whether to calculate just the actual n-grams or all n-grams from 1 through n")
/** Glue character used to join the tokens (Default: `" "`)
*
* @group param
*/
val delimiter: Param[String] =
new Param[String](this, "delimiter", "Glue character used to join the tokens")
/** Number elements per n-gram (>=1) (Default: `2`)
*
* @group setParam
*/
def setN(value: Int): this.type = set(n, value)
/** Whether to calculate just the actual n-grams or all n-grams from 1 through n (Default:
* `false`)
*
* @group setParam
*/
def setEnableCumulative(value: Boolean): this.type = set(enableCumulative, value)
/** Glue character used to join the tokens (Default: `" "`)
*
* @group setParam
*/
def setDelimiter(value: String): this.type = {
require(value.length == 1, "Delimiter should have length == 1")
set(delimiter, value)
}
/** Number elements per n-gram (>=1) (Default: `2`)
*
* @group getParam
*/
def getN: Int = $(n)
/** Whether to calculate just the actual n-grams or all n-grams from 1 through n (Default:
* `false`)
*
* @group getParam
*/
def getEnableCumulative: Boolean = $(enableCumulative)
/** Glue character used to join the tokens (Default: `" "`)
*
* @group getParam
*/
def getDelimiter: String = $(delimiter)
setDefault(n -> 2, enableCumulative -> false, delimiter -> " ")
private def generateNGrams(documents: Seq[(Int, Seq[Annotation])]): Seq[Annotation] = {
case class NgramChunkAnnotation(currentChunkIdx: Int, annotations: Seq[Annotation])
val docAnnotation = documents.flatMap { case (idx: Int, annotation: Seq[Annotation]) =>
val range = if ($(enableCumulative)) 1 to $(n) else $(n) to $(n)
val ngramsAnnotation =
range.foldLeft(NgramChunkAnnotation(0, Seq[Annotation]()))((currentNgChunk, k) => {
val chunksForCurrentWindow = annotation.iterator
.sliding(k)
.withPartial(false)
.zipWithIndex
.map { case (tokens: Seq[Annotation], localChunkIdx: Int) =>
Annotation(
outputAnnotatorType,
tokens.head.begin,
tokens.last.end,
tokens.map(_.result).mkString($(delimiter)),
Map(
"sentence" -> tokens.head.metadata.getOrElse("sentence", "0"),
"chunk" -> tokens.head.metadata.getOrElse(
"chunk",
(currentNgChunk.currentChunkIdx + localChunkIdx).toString)))
}
.toArray
NgramChunkAnnotation(
currentNgChunk.currentChunkIdx + chunksForCurrentWindow.length,
currentNgChunk.annotations ++ chunksForCurrentWindow)
})
ngramsAnnotation.annotations
}
docAnnotation
}
override def annotate(annotations: Seq[Annotation]): Seq[Annotation] = {
val documentsWithTokens = annotations
.filter(token => token.annotatorType == TOKEN)
.groupBy(_.metadata.getOrElse("sentence", "0").toInt)
.toSeq
.sortBy(_._1)
generateNGrams(documentsWithTokens)
}
}
object NGramGenerator extends ParamsAndFeaturesReadable[NGramGenerator]