All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.johnsnowlabs.nlp.annotators.pos.perceptron.PerceptronTrainingUtils.scala Maven / Gradle / Ivy

There is a newer version: 5.5.0
Show newest version
/*
 * Copyright 2017-2022 John Snow Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.johnsnowlabs.nlp.annotators.pos.perceptron

import com.johnsnowlabs.nlp.annotators.common.{IndexedTaggedWord, TaggedSentence}
import com.johnsnowlabs.nlp.util.io.ResourceHelper
import com.johnsnowlabs.nlp.{Annotation, AnnotatorType}
import org.apache.spark.sql.Dataset
import org.slf4j.{Logger, LoggerFactory}

import scala.util.Random

trait PerceptronTrainingUtils extends PerceptronUtils {

  private[perceptron] val logger: Logger = LoggerFactory.getLogger("PerceptronApproachUtils")

  /** Generates TagBook, which holds all the word to tags mapping that are not ambiguous */
  def generatesTagBook(dataset: Dataset[_]): Array[TaggedSentence] = {
    val taggedSentences = {
      import ResourceHelper.spark.implicits._

      val datasetSchemaFields = dataset.schema.fields
        .find(f =>
          f.metadata.contains("annotatorType") && f.metadata
            .getString("annotatorType") == AnnotatorType.POS)

      require(
        datasetSchemaFields.map(_.name).isDefined,
        s"Cannot train from DataFrame without POS annotatorType by posCol")

      val posColumn = datasetSchemaFields.map(_.name).get

      dataset
        .select(posColumn)
        .as[Array[Annotation]]
        .map { annotations =>
          TaggedSentence(
            annotations
              .map { annotation =>
                IndexedTaggedWord(
                  annotation.metadata("word"),
                  annotation.result,
                  annotation.begin,
                  annotation.end)
              })
        }
        .collect
    }
    taggedSentences
  }

  /** Finds very frequent tags on a word in training, and marks them as non ambiguous based on
    * tune parameters ToDo: Move such parameters to configuration
    *
    * @param taggedSentences
    *   Takes entire tagged sentences to find frequent tags
    * @param frequencyThreshold
    *   How many times at least a tag on a word to be marked as frequent
    * @param ambiguityThreshold
    *   How much percentage of total amount of words are covered to be marked as frequent
    */
  def buildTagBook(
      taggedSentences: Array[TaggedSentence],
      frequencyThreshold: Int,
      ambiguityThreshold: Double): Map[String, String] = {

    val tagFrequenciesByWord = taggedSentences
      .flatMap(_.taggedWords)
      .groupBy(_.word.toLowerCase)
      .mapValues(_.groupBy(_.tag).mapValues(_.length))

    tagFrequenciesByWord
      .filter { case (_, tagFrequencies) =>
        val (_, mode) = tagFrequencies.maxBy(_._2)
        val n = tagFrequencies.values.sum
        n >= frequencyThreshold && (mode / n.toDouble) >= ambiguityThreshold
      }
      .map { case (word, tagFrequencies) =>
        val (tag, _) = tagFrequencies.maxBy(_._2)
        logger.debug(s"TRAINING: Ambiguity discarded on: << $word >> set to: << $tag >>")
        (word, tag)
      }
  }

  /** Iterates for training */
  def trainPerceptron(
      nIterations: Int,
      initialModel: TrainingPerceptronLegacy,
      taggedSentences: Array[TaggedSentence],
      taggedWordBook: Map[String, String]): AveragedPerceptron = {
    val trainedModel = (1 to nIterations).foldLeft(initialModel) { (iteratedModel, iteration) =>
      {
        logger.debug(s"TRAINING: Iteration n: $iteration")

        /** In a shuffled sentences list, try to find tag of the word, hold the correct answer */
        Random.shuffle(taggedSentences.toList).foldLeft(iteratedModel) {
          (model, taggedSentence) =>
            /** Defines a sentence context, with room to for look back */
            var prev = START(0)
            var prev2 = START(1)
            val context = START ++: taggedSentence.words.map(w => normalized(w)) ++: END
            taggedSentence.words.zipWithIndex.foreach { case (word, i) =>
              val guess =
                taggedWordBook.getOrElse(
                  word.toLowerCase, {

                    /** if word is not found, collect its features which are used for prediction
                      * and predict
                      */
                    val features = getFeatures(i, word, context, prev, prev2)
                    val guess = model.predict(features)

                    /** Update the model based on the prediction results */
                    model.update(taggedSentence.tags(i), guess, features)

                    /** return the guess */
                    guess
                  })

              /** shift the context */
              prev2 = prev
              prev = guess
            }
            model
        }
      }
    }
    trainedModel.averageWeights()
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy