Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2017-2024 John Snow Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.johnsnowlabs.nlp.annotators.seq2seq
import com.johnsnowlabs.ml.ai.util.Generation.GenerationConfig
import com.johnsnowlabs.ml.ai.LLAMA2
import com.johnsnowlabs.ml.onnx.OnnxWrapper.DecoderWrappers
import com.johnsnowlabs.ml.onnx.{OnnxWrapper, ReadOnnxModel, WriteOnnxModel}
import com.johnsnowlabs.ml.openvino.{OpenvinoWrapper, ReadOpenvinoModel, WriteOpenvinoModel}
import com.johnsnowlabs.ml.util.LoadExternalModel.{
loadJsonStringAsset,
loadSentencePieceAsset,
modelSanityCheck,
notSupportedEngineError
}
import com.johnsnowlabs.ml.util.{ONNX, Openvino}
import com.johnsnowlabs.nlp.AnnotatorType.DOCUMENT
import com.johnsnowlabs.nlp._
import com.johnsnowlabs.ml.tensorflow.sentencepiece.{
ReadSentencePieceModel,
SentencePieceWrapper,
WriteSentencePieceModel
}
import com.johnsnowlabs.nlp.serialization.MapFeature
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.param._
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.SparkSession
import com.johnsnowlabs.nlp.serialization.{MapFeature, StructFeature}
import org.json4s._
import org.json4s.jackson.JsonMethods._
/** Llama 2: Open Foundation and Fine-Tuned Chat Models
*
* The Llama 2 release introduces a family of pretrained and fine-tuned LLMs, ranging in scale
* from 7B to 70B parameters (7B, 13B, 70B). The pretrained models come with significant
* improvements over the Llama 1 models, including being trained on 40% more tokens, having a
* much longer context length (4k tokens 🤯), and using grouped-query attention for fast
* inference of the 70B model🔥!
*
* However, the most exciting part of this release is the fine-tuned models (Llama 2-Chat), which
* have been optimized for dialogue applications using Reinforcement Learning from Human Feedback
* (RLHF). Across a wide range of helpfulness and safety benchmarks, the Llama 2-Chat models
* perform better than most open models and achieve comparable performance to ChatGPT according
* to human evaluations.
*
* Pretrained models can be loaded with `pretrained` of the companion object:
* {{{
* val llama2 = LLAMA2Transformer.pretrained()
* .setInputCols("document")
* .setOutputCol("generation")
* }}}
* The default model is `"llama_2_7b_chat_hf_int4"`, if no name is provided. For available
* pretrained models please see the [[https://sparknlp.org/models?q=llama2 Models Hub]].
*
* For extended examples of usage, see
* [[https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/LLAMA2TestSpec.scala LLAMA2TestSpec]].
*
* '''References:'''
* - [[https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/ Llama 2: Open Foundation and Fine-Tuned Chat Models]]
* - [[https://github.com/facebookresearch/llama]]
*
* '''Paper Abstract:'''
*
* ''In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned
* large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our
* fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models
* outperform open-source chat models on most benchmarks we tested, and based on our human
* evaluations for helpfulness and safety, may be a suitable substitute for closed-source models.
* We provide a detailed description of our approach to fine-tuning and safety improvements of
* Llama 2-Chat in order to enable the community to build on our work and contribute to the
* responsible development of LLMs.''
*
* '''Note:'''
*
* This is a very computationally expensive module especially on larger sequence. The use of an
* accelerator such as GPU is recommended.
*
* ==Example==
* {{{
* import spark.implicits._
* import com.johnsnowlabs.nlp.base.DocumentAssembler
* import com.johnsnowlabs.nlp.annotators.seq2seq.LLAMA2Transformer
* import org.apache.spark.ml.Pipeline
*
* val documentAssembler = new DocumentAssembler()
* .setInputCol("text")
* .setOutputCol("documents")
*
* val llama2 = LLAMA2Transformer.pretrained("llama_2_7b_chat_hf_int4")
* .setInputCols(Array("documents"))
* .setMinOutputLength(10)
* .setMaxOutputLength(50)
* .setDoSample(false)
* .setTopK(50)
* .setNoRepeatNgramSize(3)
* .setOutputCol("generation")
*
* val pipeline = new Pipeline().setStages(Array(documentAssembler, llama2))
*
* val data = Seq(
* "My name is Leonardo."
* ).toDF("text")
* val result = pipeline.fit(data).transform(data)
*
* results.select("generation.result").show(truncate = false)
* +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* |result |
* +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* |[ My name is Leonardo. I am a man of letters. I have been a man for many years. I was born in the year 1776. I came to the United States in 1776, and I have lived in the United Kingdom since 1776]|
* +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
* }}}
*
* @param uid
* required uid for storing annotator to disk
* @groupname anno Annotator types
* @groupdesc anno
* Required input and expected output annotator types
* @groupname Ungrouped Members
* @groupname param Parameters
* @groupname setParam Parameter setters
* @groupname getParam Parameter getters
* @groupname Ungrouped Members
* @groupprio param 1
* @groupprio anno 2
* @groupprio Ungrouped 3
* @groupprio setParam 4
* @groupprio getParam 5
* @groupdesc param
* A list of (hyper-)parameter keys this annotator can take. Users can set and get the
* parameter values through setters and getters, respectively.
*/
class LLAMA2Transformer(override val uid: String)
extends AnnotatorModel[LLAMA2Transformer]
with HasBatchedAnnotate[LLAMA2Transformer]
with ParamsAndFeaturesWritable
with WriteOnnxModel
with WriteOpenvinoModel
with HasGeneratorProperties
with WriteSentencePieceModel
with HasEngine {
def this() = this(Identifiable.randomUID("LLAMA2TRANSFORMER"))
/** Input annotator type : DOCUMENT
*
* @group param
*/
override val inputAnnotatorTypes: Array[AnnotatorType] = Array(DOCUMENT)
/** Output annotator type : DOCUMENT
*
* @group param
*/
override val outputAnnotatorType: String = DOCUMENT
/** @group setParam */
def setRandomSeed(value: Int): LLAMA2Transformer.this.type = {
if (randomSeed.isEmpty) {
this.randomSeed = Some(value)
}
this
}
/** A list of token ids which are ignored in the decoder's output (Default: `Array()`)
*
* @group param
*/
var ignoreTokenIds = new IntArrayParam(
this,
"ignoreTokenIds",
"A list of token ids which are ignored in the decoder's output")
/** @group setParam */
def setIgnoreTokenIds(tokenIds: Array[Int]): LLAMA2Transformer.this.type = {
set(ignoreTokenIds, tokenIds)
}
/** @group getParam */
def getIgnoreTokenIds: Array[Int] = $(ignoreTokenIds)
private var _model: Option[Broadcast[LLAMA2]] = None
val generationConfig: StructFeature[GenerationConfig] =
new StructFeature(this, "generationConfig").setProtected()
def setGenerationConfig(value: GenerationConfig): this.type =
set(generationConfig, value)
def getGenerationConfig: GenerationConfig = $$(generationConfig)
/** @group setParam */
def setModelIfNotSet(
spark: SparkSession,
onnxWrappers: Option[DecoderWrappers],
openvinoWrapper: Option[OpenvinoWrapper],
spp: SentencePieceWrapper): this.type = {
if (_model.isEmpty) {
_model = Some(
spark.sparkContext.broadcast(
new LLAMA2(
onnxWrappers,
openvinoWrapper,
spp = spp,
generationConfig = getGenerationConfig)))
}
this
}
/** @group getParam */
def getModelIfNotSet: LLAMA2 = _model.get.value
setDefault(
minOutputLength -> 0,
maxOutputLength -> 20,
doSample -> false,
temperature -> 0.9,
topK -> 100,
topP -> 0.9,
repetitionPenalty -> 1.0,
noRepeatNgramSize -> 0,
ignoreTokenIds -> Array(),
batchSize -> 1,
beamSize -> 1,
maxInputLength -> 4096,
stopTokenIds -> Array())
/** takes a document and annotations and produces new annotations of this annotator's annotation
* type
*
* @param batchedAnnotations
* Annotations that correspond to inputAnnotationCols generated by previous annotators if any
* @return
* any number of annotations processed for every input annotation. Not necessary one to one
* relationship
*/
override def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]] = {
val allAnnotations = batchedAnnotations
.filter(_.nonEmpty)
.zipWithIndex
.flatMap { case (annotations, i) =>
annotations.filter(_.result.nonEmpty).map(x => (x, i))
}
val processedAnnotations = if (allAnnotations.nonEmpty) {
this.getModelIfNotSet.predict(
sentences = allAnnotations.map(_._1),
batchSize = $(batchSize),
minOutputLength = $(minOutputLength),
maxOutputLength = $(maxOutputLength),
doSample = $(doSample),
temperature = $(temperature),
topK = $(topK),
topP = $(topP),
repetitionPenalty = $(repetitionPenalty),
noRepeatNgramSize = $(noRepeatNgramSize),
randomSeed = this.randomSeed,
ignoreTokenIds = $(ignoreTokenIds),
beamSize = $(beamSize),
maxInputLength = $(maxInputLength),
stopTokenIds = $(stopTokenIds))
} else {
Seq()
}
Seq(processedAnnotations)
}
override def onWrite(path: String, spark: SparkSession): Unit = {
super.onWrite(path, spark)
getEngine match {
case ONNX.name =>
val wrappers = getModelIfNotSet.onnxWrappers
writeOnnxModels(
path,
spark,
Seq((wrappers.get.decoder, "decoder_model.onnx")),
LLAMA2Transformer.suffix)
val obj = getModelIfNotSet
writeSentencePieceModel(
path,
spark,
obj.spp,
LLAMA2Transformer.suffix,
LLAMA2Transformer.sppFile)
case Openvino.name =>
val wrappers = getModelIfNotSet.openvinoWrapper
writeOpenvinoModel(
path,
spark,
wrappers.get,
LLAMA2Transformer.suffix,
LLAMA2Transformer.openvinoFile)
val obj = getModelIfNotSet
writeSentencePieceModel(
path,
spark,
obj.spp,
LLAMA2Transformer.suffix,
LLAMA2Transformer.sppFile)
}
}
}
trait ReadablePretrainedLLAMA2TransformerModel
extends ParamsAndFeaturesReadable[LLAMA2Transformer]
with HasPretrained[LLAMA2Transformer] {
override val defaultModelName: Some[String] = Some("llama_2_7b_chat_hf_int4")
/** Java compliant-overrides */
override def pretrained(): LLAMA2Transformer = super.pretrained()
override def pretrained(name: String): LLAMA2Transformer = super.pretrained(name)
override def pretrained(name: String, lang: String): LLAMA2Transformer =
super.pretrained(name, lang)
override def pretrained(name: String, lang: String, remoteLoc: String): LLAMA2Transformer =
super.pretrained(name, lang, remoteLoc)
}
trait ReadLLAMA2TransformerDLModel
extends ReadOnnxModel
with ReadOpenvinoModel
with ReadSentencePieceModel {
this: ParamsAndFeaturesReadable[LLAMA2Transformer] =>
override val onnxFile: String = "llama2_onnx"
val suffix: String = "llama2"
override val sppFile: String = "llama2_spp"
override val openvinoFile: String = "llama2_openvino"
def readModel(instance: LLAMA2Transformer, path: String, spark: SparkSession): Unit = {
instance.getEngine match {
case ONNX.name =>
val wrappers =
readOnnxModels(path, spark, Seq("decoder_model.onnx"), suffix)
val onnxWrappers =
DecoderWrappers(decoder = wrappers("decoder_model.onnx"))
val spp = readSentencePieceModel(path, spark, "_llama2_spp", sppFile)
instance.setModelIfNotSet(spark, Some(onnxWrappers), None, spp)
case Openvino.name =>
val ovWrapper =
readOpenvinoModel(path, spark, "_llama2_ov")
val spp = readSentencePieceModel(path, spark, "_llama2_spp", sppFile)
instance.setModelIfNotSet(spark, None, Some(ovWrapper), spp)
case _ =>
throw new Exception(notSupportedEngineError)
}
}
addReader(readModel)
def loadSavedModel(
modelPath: String,
spark: SparkSession,
useOpenvino: Boolean = false): LLAMA2Transformer = {
implicit val formats: DefaultFormats.type = DefaultFormats // for json4
val (localModelPath, detectedEngine) =
modelSanityCheck(modelPath, isDecoder = true)
val modelConfig: JValue =
parse(loadJsonStringAsset(localModelPath, "config.json"))
val beginSuppressTokens: Array[Int] =
(modelConfig \ "begin_suppress_tokens").extract[Array[Int]]
val suppressTokenIds: Array[Int] =
(modelConfig \ "suppress_tokens").extract[Array[Int]]
val forcedDecoderIds: Array[(Int, Int)] =
(modelConfig \ "forced_decoder_ids").extract[Array[Array[Int]]].map {
case idxWithTokenId: Array[Int] if idxWithTokenId.length == 2 =>
(idxWithTokenId(0), idxWithTokenId(1))
case _ =>
throw new Exception(
"Could not extract forced_decoder_ids. Should be a list of tuples with 2 entries.")
}
def arrayOrNone[T](array: Array[T]): Option[Array[T]] =
if (array.nonEmpty) Some(array) else None
val bosTokenId = (modelConfig \ "bos_token_id").extract[Int]
val eosTokenId = (modelConfig \ "eos_token_id").extract[Int]
val padTokenId = (modelConfig \ "eos_token_id").extract[Int]
val vocabSize = (modelConfig \ "vocab_size").extract[Int]
val annotatorModel = new LLAMA2Transformer()
.setGenerationConfig(
GenerationConfig(
bosTokenId,
padTokenId,
eosTokenId,
vocabSize,
arrayOrNone(beginSuppressTokens),
arrayOrNone(suppressTokenIds),
arrayOrNone(forcedDecoderIds)))
val spModel = loadSentencePieceAsset(localModelPath, "tokenizer.model")
val modelEngine =
if (useOpenvino)
Openvino.name
else
detectedEngine
annotatorModel.set(annotatorModel.engine, modelEngine)
modelEngine match {
case ONNX.name =>
val onnxWrapperDecoder =
OnnxWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
modelName = "decoder_model",
dataFileSuffix = Some(".onnx_data"),
onnxFileSuffix = Some(suffix))
val onnxWrappers = DecoderWrappers(onnxWrapperDecoder)
annotatorModel
.setModelIfNotSet(spark, Some(onnxWrappers), None, spModel)
case Openvino.name =>
val openvinoWrapper =
OpenvinoWrapper.read(
spark,
localModelPath,
zipped = false,
useBundle = true,
detectedEngine = detectedEngine)
annotatorModel.setModelIfNotSet(spark, None, Some(openvinoWrapper), spModel)
case _ =>
throw new Exception(notSupportedEngineError)
}
annotatorModel
}
}
object LLAMA2Transformer
extends ReadablePretrainedLLAMA2TransformerModel
with ReadLLAMA2TransformerDLModel